BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36445471)

  • 1. Proteomic characterization of spontaneously regrowing spinal cord following injury in the teleost fish Apteronotus leptorhynchus, a regeneration-competent vertebrate.
    Sîrbulescu RF; Ilieş I; Amelung L; Zupanc GKH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2022 Nov; 208(5-6):671-706. PubMed ID: 36445471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional regeneration after spinal cord injury in the weakly electric teleost fish, Apteronotus leptorhynchus.
    Sîrbulescu RF; Ilieş I; Zupanc GK
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Jul; 195(7):699-714. PubMed ID: 19430939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of caspase-3-mediated apoptosis during spinal cord regeneration in the teleost fish, Apteronotus leptorhynchus.
    Sîrbulescu RF; Zupanc GK
    Brain Res; 2009 Dec; 1304():14-25. PubMed ID: 19782669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calbindin-D
    Vitalo AG; Ilieş I; Zupanc GKH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2019 Aug; 205(4):595-608. PubMed ID: 31165281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The central nervous system transcriptome of the weakly electric brown ghost knifefish (Apteronotus leptorhynchus): de novo assembly, annotation, and proteomics validation.
    Salisbury JP; Sîrbulescu RF; Moran BM; Auclair JR; Zupanc GK; Agar JN
    BMC Genomics; 2015 Mar; 16(1):166. PubMed ID: 25879418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absence of gliosis in a teleost model of spinal cord regeneration.
    Vitalo AG; Sîrbulescu RF; Ilieş I; Zupanc GK
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Jun; 202(6):445-56. PubMed ID: 27225982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stem-Cell-Driven Growth and Regrowth of the Adult Spinal Cord in Teleost Fish.
    Zupanc GKH
    Dev Neurobiol; 2019 May; 79(5):406-423. PubMed ID: 30829442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteome analysis reveals protein candidates involved in early stages of brain regeneration of teleost fish.
    Ilieş I; Zupanc MM; Zupanc GK
    Neuroscience; 2012 Sep; 219():302-13. PubMed ID: 22659563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of temperature on spinal cord regeneration in the weakly electric fish, Apteronotus leptorhynchus.
    Sîrbulescu RF; Zupanc GK
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 May; 196(5):359-68. PubMed ID: 20339850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of acupuncture-specific proteins in the process of electro-acupuncture after spinal cord injury.
    Li WJ; Pan SQ; Zeng YS; Su BG; Li SM; Ding Y; Li Y; Ruan JW
    Neurosci Res; 2010 Aug; 67(4):307-16. PubMed ID: 20438770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiratory axon regeneration in the chronically injured spinal cord.
    Cheng L; Sami A; Ghosh B; Goudsward HJ; Smith GM; Wright MC; Li S; Lepore AC
    Neurobiol Dis; 2021 Jul; 155():105389. PubMed ID: 33975016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts.
    Zukor KA; Kent DT; Odelberg SJ
    Neural Dev; 2011 Jan; 6():1. PubMed ID: 21205291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic analysis of injured spinal cord tissue proteins using 2-DE and MALDI-TOF MS.
    Kang SK; So HH; Moon YS; Kim CH
    Proteomics; 2006 May; 6(9):2797-812. PubMed ID: 16586436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish.
    Zupanc GK
    Brain Behav Evol; 2001; 58(5):250-75. PubMed ID: 11978945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinal cord repair in regeneration-competent vertebrates: adult teleost fish as a model system.
    Sîrbulescu RF; Zupanc GK
    Brain Res Rev; 2011 Jun; 67(1-2):73-93. PubMed ID: 21059372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ptena, but not Ptenb, reduces regeneration after spinal cord injury in adult zebrafish.
    Liu D; Yu Y; Schachner M
    Exp Neurol; 2014 Nov; 261():196-205. PubMed ID: 24929056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatio-temporal distribution of microglia/macrophages during regeneration in the cerebellum of adult teleost fish, Apteronotus leptorhynchus: a quantitative analysis.
    Zupanc GK; Clint SC; Takimoto N; Hughes AT; Wellbrock UM; Meissner D
    Brain Behav Evol; 2003; 62(1):31-42. PubMed ID: 12907858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic profiling of the insoluble pellets of the transected rat spinal cord.
    Yan X; Liu T; Yang S; Ding Q; Liu Y; Zhang X; Que H; Wei K; Luo Z; Liu S
    J Neurotrauma; 2009 Feb; 26(2):179-93. PubMed ID: 19119913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteome analysis identifies novel protein candidates involved in regeneration of the cerebellum of teleost fish.
    Zupanc MM; Wellbrock UM; Zupanc GK
    Proteomics; 2006 Jan; 6(2):677-96. PubMed ID: 16372261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of caspase-3-mediated apoptosis improves spinal cord repair in a regeneration-competent vertebrate system.
    Sîrbulescu RF; Zupanc GK
    Neuroscience; 2010 Dec; 171(2):599-612. PubMed ID: 20837106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.