These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 36445488)

  • 1. Single-layered fluorinated graphene nanopores for H
    Wang T; Liu L; Perez-Aguilar JM; Gu Z
    J Mol Model; 2022 Nov; 28(12):403. PubMed ID: 36445488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.
    Yuan Z; Govind Rajan A; Misra RP; Drahushuk LW; Agrawal KV; Strano MS; Blankschtein D
    ACS Nano; 2017 Aug; 11(8):7974-7987. PubMed ID: 28696710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas Separation Membranes with Atom-Thick Nanopores: The Potential of Nanoporous Single-Layer Graphene.
    Villalobos LF; Babu DJ; Hsu KJ; Van Goethem C; Agrawal KV
    Acc Mater Res; 2022 Oct; 3(10):1073-1087. PubMed ID: 36338295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective Etching of Graphene Membrane Nanopores: From Molecular Sieving to Extreme Permeance.
    Schlichting KP; Poulikakos D
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36468-36477. PubMed ID: 32805790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorptive separation of CH
    Mert H; Deniz CU; Baykasoglu C
    J Mol Model; 2023 Sep; 29(10):315. PubMed ID: 37707601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable, Temperature-Dependent Gas Mixture Permeation and Separation through Suspended Nanoporous Single-Layer Graphene Membranes.
    Yuan Z; Benck JD; Eatmon Y; Blankschtein D; Strano MS
    Nano Lett; 2018 Aug; 18(8):5057-5069. PubMed ID: 30044919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation of Diffusion and Local Structure of CH
    Hu M; Gao W; Zhang L; Wang Y; Feng H
    Chemphyschem; 2024 Feb; 25(3):e202300851. PubMed ID: 38088520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation.
    Zhao J; He G; Huang S; Villalobos LF; Dakhchoune M; Bassas H; Agrawal KV
    Sci Adv; 2019 Jan; 5(1):eaav1851. PubMed ID: 30746475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition effect of a non-permeating component on gas permeability of nanoporous graphene membranes.
    Wen B; Sun C; Bai B
    Phys Chem Chem Phys; 2015 Sep; 17(36):23619-26. PubMed ID: 26299564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the H2/CH4 Separation Through Two-Dimensional Graphene Channels: Influence of Edge Functionalization.
    Xu J; Sang P; Xing W; Shi Z; Zhao L; Guo W; Yan Z
    Nanoscale Res Lett; 2015 Dec; 10(1):492. PubMed ID: 26698875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Selective Hydrogen Permeation through Graphdiyne Membrane: A Theoretical Study.
    Liu Q; Cheng L; Liu G
    Membranes (Basel); 2020 Oct; 10(10):. PubMed ID: 33076414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thin, High-Flux, Self-Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures.
    Bouša D; Friess K; Pilnáček K; Vopička O; Lanč M; Fónod K; Pumera M; Sedmidubský D; Luxa J; Sofer Z
    Chemistry; 2017 Aug; 23(47):11416-11422. PubMed ID: 28568841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion-Gated Gas Separation through Porous Graphene.
    Tian Z; Mahurin SM; Dai S; Jiang DE
    Nano Lett; 2017 Mar; 17(3):1802-1807. PubMed ID: 28231000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-layer graphene membranes by crack-free transfer for gas mixture separation.
    Huang S; Dakhchoune M; Luo W; Oveisi E; He G; Rezaei M; Zhao J; Alexander DTL; Züttel A; Strano MS; Agrawal KV
    Nat Commun; 2018 Jul; 9(1):2632. PubMed ID: 29980683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extremely permeable porous graphene with high H
    Shimizu K; Ohba T
    Phys Chem Chem Phys; 2017 Jul; 19(28):18201-18207. PubMed ID: 28675236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Gas Separation through Graphene Nanopore Ensembles with Realistic Pore Size Distributions.
    Yuan Z; Govind Rajan A; He G; Misra RP; Strano MS; Blankschtein D
    ACS Nano; 2021 Jan; 15(1):1727-1740. PubMed ID: 33439000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Characterization of Membrane Gas Separation under Very High Temperatures and Pressure: Single- and Mixed-Gas CO
    Neyertz S; Brown D; Salimi S; Radmanesh F; Benes NE
    Membranes (Basel); 2022 May; 12(5):. PubMed ID: 35629852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A windowed carbon nanotube membrane for CO
    Miao F; Jiang H
    RSC Adv; 2022 Jun; 12(26):16604-16614. PubMed ID: 35754878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploration of nanoporous graphene membranes for the separation of N2 from CO2: a multi-scale computational study.
    Wang Y; Yang Q; Li J; Yang J; Zhong C
    Phys Chem Chem Phys; 2016 Mar; 18(12):8352-8. PubMed ID: 26701145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A remarkable two-dimensional membrane for multifunctional gas separation: halogenated metal-free fused-ring polyphthalocyanine.
    Meng Z; Zhang Y; Shi Q; Liu Y; Du A; Lu R
    Phys Chem Chem Phys; 2018 Jul; 20(28):18931-18937. PubMed ID: 29896586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.