BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 36445744)

  • 1. Effects of a Modern Virtual Reality 3D Head-Mounted Display Exergame on Simulator Sickness and Immersion Under Specific Conditions in Young Women and Men: Experimental Study.
    Ciążyńska J; Janowski M; Maciaszek J
    JMIR Serious Games; 2022 Nov; 10(4):e41234. PubMed ID: 36445744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exergaming With Beat Saber: An Investigation of Virtual Reality Aftereffects.
    Szpak A; Michalski SC; Loetscher T
    J Med Internet Res; 2020 Oct; 22(10):e19840. PubMed ID: 33095182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual reality-enhanced walking in people post-stroke: effect of optic flow speed and level of immersion on the gait biomechanics.
    De Keersmaecker E; Van Bladel A; Zaccardi S; Lefeber N; Rodriguez-Guerrero C; Kerckhofs E; Jansen B; Swinnen E
    J Neuroeng Rehabil; 2023 Sep; 20(1):124. PubMed ID: 37749566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studying the Effect of Display Type and Viewing Perspective on User Experience in Virtual Reality Exergames.
    Xu W; Liang HN; Zhang Z; Baghaei N
    Games Health J; 2020 Dec; 9(6):405-414. PubMed ID: 32074463
    [No Abstract]   [Full Text] [Related]  

  • 5. Validation of the Virtual Reality Neuroscience Questionnaire: Maximum Duration of Immersive Virtual Reality Sessions Without the Presence of Pertinent Adverse Symptomatology.
    Kourtesis P; Collina S; Doumas LAA; MacPherson SE
    Front Hum Neurosci; 2019; 13():417. PubMed ID: 31849627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immersive virtual reality health games: a narrative review of game design.
    Tao G; Garrett B; Taverner T; Cordingley E; Sun C
    J Neuroeng Rehabil; 2021 Feb; 18(1):31. PubMed ID: 33573684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyber sickness in low-immersive, semi-immersive, and fully immersive virtual reality.
    Martirosov S; Bureš M; Zítka T
    Virtual Real; 2022; 26(1):15-32. PubMed ID: 34025203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immersive virtual reality during gait rehabilitation increases walking speed and motivation: a usability evaluation with healthy participants and patients with multiple sclerosis and stroke.
    Winter C; Kern F; Gall D; Latoschik ME; Pauli P; Käthner I
    J Neuroeng Rehabil; 2021 Apr; 18(1):68. PubMed ID: 33888148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tolerance of immersive head-mounted virtual reality among older nursing home residents.
    Rmadi H; Maillot P; Artico R; Baudouin E; Hanneton S; Dietrich G; Duron E
    Front Public Health; 2023; 11():1163484. PubMed ID: 37538272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual reality exergame in older patients with hypertension: a preliminary study to determine load intensity and blood pressure.
    Vorwerg-Gall S; Stamm O; Haink M
    BMC Geriatr; 2023 Aug; 23(1):527. PubMed ID: 37644380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual Reality as a Therapy Tool for Walking Activities in Pediatric Neurorehabilitation: Usability and User Experience Evaluation.
    Ammann-Reiffer C; Kläy A; Keller U
    JMIR Serious Games; 2022 Jul; 10(3):e38509. PubMed ID: 35834316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A social VR-based collaborative exergame for rehabilitation: codesign, development and user study.
    Shah SHH; Karlsen AST; Solberg M; Hameed IA
    Virtual Real; 2022 Nov; ():1-18. PubMed ID: 36465891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Immersive Virtual Reality Headset Viewing on Young Children: Visuomotor Function, Postural Stability, and Motion Sickness.
    Tychsen L; Foeller P
    Am J Ophthalmol; 2020 Jan; 209():151-159. PubMed ID: 31377280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transfer of motor skill between virtual reality viewed using a head-mounted display and conventional screen environments.
    Juliano JM; Liew SL
    J Neuroeng Rehabil; 2020 Apr; 17(1):48. PubMed ID: 32276664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of virtual reality technology locomotive multi-sensory motion stimuli on a user simulator sickness and controller intuitiveness during a navigation task.
    Aldaba CN; Moussavi Z
    Med Biol Eng Comput; 2020 Jan; 58(1):143-154. PubMed ID: 31758315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wearable Immersive Virtual Reality Device for Promoting Physical Activity in Parkinson's Disease Patients.
    Campo-Prieto P; Cancela-Carral JM; Rodríguez-Fuentes G
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are Modern Head-Mounted Displays Sexist? A Systematic Review on Gender Differences in HMD-Mediated Virtual Reality.
    Grassini S; Laumann K
    Front Psychol; 2020; 11():1604. PubMed ID: 32903791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Desktop VR Is Better Than Non-ambulatory HMD VR for Spatial Learning.
    Srivastava P; Rimzhim A; Vijay P; Singh S; Chandra S
    Front Robot AI; 2019; 6():50. PubMed ID: 33501066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors Associated With Virtual Reality Sickness in Head-Mounted Displays: A Systematic Review and Meta-Analysis.
    Saredakis D; Szpak A; Birckhead B; Keage HAD; Rizzo A; Loetscher T
    Front Hum Neurosci; 2020; 14():96. PubMed ID: 32300295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mindfulness-based Virtual Reality Intervention in Hemodialysis Patients: A Pilot Study on End-user Perceptions and Safety.
    Hernandez R; Burrows B; Browning MHEM; Solai K; Fast D; Litbarg NO; Wilund KR; Moskowitz JT
    Kidney360; 2021 Mar; 2(3):435-444. PubMed ID: 35369024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.