These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36445807)

  • 1. Photoresponsive Carbon-Azobenzene Hybrids: A Promising Material for Energy Devices.
    Baby A; John AM; Balakrishnan SP
    Chemphyschem; 2023 Mar; 24(6):e202200676. PubMed ID: 36445807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Azobenzene-based solar thermal fuels: design, properties, and applications.
    Dong L; Feng Y; Wang L; Feng W
    Chem Soc Rev; 2018 Oct; 47(19):7339-7368. PubMed ID: 30168543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels.
    Kucharski TJ; Ferralis N; Kolpak AM; Zheng JO; Nocera DG; Grossman JC
    Nat Chem; 2014 May; 6(5):441-7. PubMed ID: 24755597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solar-Thermal Energy Conversion and Storage Using Photoresponsive Azobenzene-Containing Polymers.
    Wu S; Butt HJ
    Macromol Rapid Commun; 2020 Jan; 41(1):e1900413. PubMed ID: 31737964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Azobenzene-Based Solar Thermal Fuels: A Review.
    Zhang B; Feng Y; Feng W
    Nanomicro Lett; 2022 Jun; 14(1):138. PubMed ID: 35767090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water-Soluble Azobenzene-Based Solar Thermal Fuels with Improved Long-Term Energy Storage and Energy Density.
    Chen H; Yang C; Ren H; Zhang W; Cui X; Tang Q
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37944917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels.
    Kolpak AM; Grossman JC
    Nano Lett; 2011 Aug; 11(8):3156-62. PubMed ID: 21688811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of Norbornadiene/Quadricyclane Photoswitches for Molecular Solar Thermal Energy Storage Applications.
    Orrego-Hernández J; Dreos A; Moth-Poulsen K
    Acc Chem Res; 2020 Aug; 53(8):1478-1487. PubMed ID: 32662627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding Solid-State Photochemical Energy Storage in Polymers with Azobenzene Side Groups.
    Wallace C; Griffiths K; Dale BL; Roberts S; Parsons J; Griffin JM; Görtz V
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31787-31794. PubMed ID: 37350514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid-Based Multijunction Molecular Solar Thermal Energy Collection Device.
    Wang Z; Moïse H; Cacciarini M; Nielsen MB; Morikawa MA; Kimizuka N; Moth-Poulsen K
    Adv Sci (Weinh); 2021 Nov; 8(21):e2103060. PubMed ID: 34581516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solar Efficiency of Azo-Photoswitches for Energy Conversion: A Comprehensive Assessment.
    Sun W; Shangguan Z; Zhang X; Dang T; Zhang ZY; Li T
    ChemSusChem; 2023 Sep; 16(18):e202300582. PubMed ID: 37278140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid and Photoliquefiable Azobenzene Derivatives for Solvent-free Molecular Solar Thermal Fuels.
    Yang Y; Huang S; Ma Y; Yi J; Jiang Y; Chang X; Li Q
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35623-35634. PubMed ID: 35916069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoliquefiable Azobenzene Surfactants toward Solar Thermal Fuels that Upgrade Photon Energy Storage via Molecular Design.
    Zhang L; Liu H; Du Q; Zhang G; Zhu S; Wu Z; Luo X
    Small; 2023 Mar; 19(10):e2206623. PubMed ID: 36534833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multichromophoric photoswitches for solar energy storage: from azobenzene to norbornadiene, and MOST things in between.
    Salthouse RJ; Moth-Poulsen K
    J Mater Chem A Mater; 2024 Feb; 12(6):3180-3208. PubMed ID: 38327567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels.
    Cho EN; Zhitomirsky D; Han GG; Liu Y; Grossman JC
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8679-8687. PubMed ID: 28234453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid chromophore/template nanostructures: a customizable platform material for solar energy storage and conversion.
    Kolpak AM; Grossman JC
    J Chem Phys; 2013 Jan; 138(3):034303. PubMed ID: 23343272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoswitchable Molecular Rings for Solar-Thermal Energy Storage.
    Durgun E; Grossman JC
    J Phys Chem Lett; 2013 Mar; 4(6):854-60. PubMed ID: 26291346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies for Incorporating Graphene Oxides and Quantum Dots into Photoresponsive Azobenzenes for Photonics and Thermal Applications.
    Bokare A; Arif J; Erogbogbo F
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photochromic Dendrimers for Photoswitched Solid-To-Liquid Transitions and Solar Thermal Fuels.
    Xu X; Zhang P; Wu B; Xing Y; Shi K; Fang W; Yu H; Wang G
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):50135-50142. PubMed ID: 33085470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Taking up the quest for novel molecular solar thermal systems: Pros and cons of storing energy with cubane and cubadiene.
    Merino-Robledillo C; Marazzi M
    Front Chem; 2023; 11():1171848. PubMed ID: 37123877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.