These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36445807)

  • 21. Visible Light-Driven Alkyne-Grafted Ethylene-Bridged Azobenzene Chromophores for Photothermal Utilization.
    Fang W; Feng Y; Gao J; Wang H; Ge J; Yang Q; Feng W
    Molecules; 2022 May; 27(10):. PubMed ID: 35630773
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photo-responsive carbon nanomaterials functionalized by azobenzene moieties: structures, properties and application.
    Feng W; Luo W; Feng Y
    Nanoscale; 2012 Oct; 4(20):6118-34. PubMed ID: 22915068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Light-Switchable Azobenzene-Containing Macromolecules: From UV to Near Infrared.
    Weis P; Wu S
    Macromol Rapid Commun; 2018 Jan; 39(1):. PubMed ID: 28643895
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent progress in the study of integrated solar cell-energy storage systems.
    Lu Y; Chen M; Zhu G; Zhang Y
    Nanoscale; 2024 May; 16(18):8778-8790. PubMed ID: 38634463
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photoswitches with different numbers of azo chromophores for molecular solar thermal storage.
    Sun S; Liang S; Xu WC; Wang M; Gao J; Zhang Q; Wu S
    Soft Matter; 2022 Nov; 18(46):8840-8849. PubMed ID: 36373235
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-energy, stable and recycled molecular solar thermal storage materials using AZO/graphene hybrids by optimizing hydrogen bonds.
    Luo W; Feng Y; Qin C; Li M; Li S; Cao C; Long P; Liu E; Hu W; Yoshino K; Feng W
    Nanoscale; 2015 Oct; 7(39):16214-21. PubMed ID: 26289389
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Supramolecular Cation-π Interaction Enhances Molecular Solar Thermal Fuel.
    Song T; Lei H; Cai F; Kang Y; Yu H; Zhang L
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1940-1949. PubMed ID: 34928571
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and Tuning of Photoswitches for Solar Energy Storage.
    Losantos R; Sampedro D
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34206445
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intermolecular London Dispersion Interactions of Azobenzene Switches for Tuning Molecular Solar Thermal Energy Storage Systems.
    Kunz A; Heindl AH; Dreos A; Wang Z; Moth-Poulsen K; Becker J; Wegner HA
    Chempluschem; 2019 Aug; 84(8):1145-1148. PubMed ID: 31943965
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photon Energy Storage in Strained Cyclic Hydrazones: Emerging Molecular Solar Thermal Energy Storage Compounds.
    Qiu Q; Yang S; Gerkman MA; Fu H; Aprahamian I; Han GGD
    J Am Chem Soc; 2022 Jul; 144(28):12627-12631. PubMed ID: 35801820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental Exploration of Hybrid Nanofluids as Energy-Efficient Fluids in Solar and Thermal Energy Storage Applications.
    Yasmin H; Giwa SO; Noor S; Sharifpur M
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimization of Norbornadiene Compounds for Solar Thermal Storage by First-Principles Calculations.
    Kuisma M; Lundin A; Moth-Poulsen K; Hyldgaard P; Erhart P
    ChemSusChem; 2016 Jul; 9(14):1786-94. PubMed ID: 27254282
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent Advances in Solar Thermal Electrochemical Process (STEP) for Carbon Neutral Products and High Value Nanocarbons.
    Ren J; Yu A; Peng P; Lefler M; Li FF; Licht S
    Acc Chem Res; 2019 Nov; 52(11):3177-3187. PubMed ID: 31697061
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Quest for Photoswitches Activated by Near-Infrared Light: A Theoretical Study of the Photochemistry of BF2 -Coordinated Azo Derivatives.
    Moreno M; Gelabert R; Lluch JM
    Chemphyschem; 2016 Sep; 17(18):2824-38. PubMed ID: 27324614
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solar Azo-Switches for Effective E→Z Photoisomerization by Sunlight.
    Zhang ZY; Dong D; Bösking T; Dang T; Liu C; Sun W; Xie M; Hecht S; Li T
    Angew Chem Int Ed Engl; 2024 Jul; 63(31):e202404528. PubMed ID: 38722260
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solar Energy Storage by Molecular Norbornadiene-Quadricyclane Photoswitches: Polymer Film Devices.
    Petersen AU; Hofmann AI; Fillols M; Mansø M; Jevric M; Wang Z; Sumby CJ; Müller C; Moth-Poulsen K
    Adv Sci (Weinh); 2019 Jun; 6(12):1900367. PubMed ID: 31380172
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Site Selectivity of Peptoids as Azobenzene Scaffold for Molecular Solar Thermal Energy Storage.
    Tassignon B; Wang Z; Galanti A; De Winter J; Samorì P; Cornil J; Moth-Poulsen K; Gerbaux P
    Chemistry; 2023 Dec; 29(70):e202303168. PubMed ID: 37796081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A High Energy Density Azobenzene/Graphene Oxide Hybrid with Weak Nonbonding Interactions for Solar Thermal Storage.
    Pang W; Xue J; Pang H
    Sci Rep; 2019 Mar; 9(1):5224. PubMed ID: 30914751
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational investigation of photoswitch conjugates for molecular solar energy storage.
    Elholm JL; Liasi Z; Mikkelsen MK; Hillers-Bendtsen AE; Mikkelsen KV
    Phys Chem Chem Phys; 2023 Aug; 25(33):21964-21969. PubMed ID: 37554092
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Status and challenges for molecular solar thermal energy storage system based devices.
    Wang Z; Hölzel H; Moth-Poulsen K
    Chem Soc Rev; 2022 Aug; 51(17):7313-7326. PubMed ID: 35726574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.