BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36445832)

  • 1. Diquinol Functionality Boosts the Superoxide Dismutase Mimicry of a Zn(II) Complex with a Redox-Active Ligand while Maintaining Catalyst Stability and Enhanced Activity in Phosphate Solution.
    Moore JL; Oppelt J; Senft L; Franke A; Scheitler A; Dukes MW; Alix HB; Saunders AC; Karbalaei S; Schwartz DD; Ivanović-Burmazović I; Goldsmith CR
    Inorg Chem; 2022 Dec; 61(49):19983-19997. PubMed ID: 36445832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Analysis of the Superoxide Dismutase Mimicry Exhibited by a Zinc(II) Complex with a Redox-Active Organic Ligand.
    Miliordos E; Moore JL; Obisesan SV; Oppelt J; Ivanović-Burmazović I; Goldsmith CR
    J Phys Chem A; 2024 Feb; 128(8):1491-1500. PubMed ID: 38354404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quinol-containing ligands enable high superoxide dismutase activity by modulating coordination number, charge, oxidation states and stability of manganese complexes throughout redox cycling.
    Senft L; Moore JL; Franke A; Fisher KR; Scheitler A; Zahl A; Puchta R; Fehn D; Ison S; Sader S; Ivanović-Burmazović I; Goldsmith CR
    Chem Sci; 2021 Aug; 12(31):10483-10500. PubMed ID: 34447541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. I. Chemical reactions involved in the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone.
    Li Y; Kuppusamy P; Zweier JL; Trush MA
    Mol Pharmacol; 1996 Mar; 49(3):404-11. PubMed ID: 8643079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A macrocyclic quinol-containing ligand enables high catalase activity even with a redox-inactive metal at the expense of the ability to mimic superoxide dismutase.
    Karbalaei S; Franke A; Oppelt J; Aziz T; Jordan A; Pokkuluri PR; Schwartz DD; Ivanović-Burmazović I; Goldsmith CR
    Chem Sci; 2023 Sep; 14(36):9910-9922. PubMed ID: 37736643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. II. Biological effects resulting from the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone.
    Li Y; Kuppusamy P; Zweir JL; Trush MA
    Mol Pharmacol; 1996 Mar; 49(3):412-21. PubMed ID: 8643080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superoxide dismutase activity enabled by a redox-active ligand rather than metal.
    Ward MB; Scheitler A; Yu M; Senft L; Zillmann AS; Gorden JD; Schwartz DD; Ivanović-Burmazović I; Goldsmith CR
    Nat Chem; 2018 Dec; 10(12):1207-1212. PubMed ID: 30275506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biopyrrin Pigments: From Heme Metabolites to Redox-Active Ligands and Luminescent Radicals.
    Tomat E; Curtis CJ
    Acc Chem Res; 2021 Dec; 54(24):4584-4594. PubMed ID: 34870973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A critical assessment of the evidence from XAFS and crystallography for the breakage of the imidazolate bridge during catalysis in CuZn superoxide dismutase.
    Murphy LM; Strange RW; Hasnain SS
    Structure; 1997 Mar; 5(3):371-9. PubMed ID: 9083106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution structure of reduced monomeric Q133M2 copper, zinc superoxide dismutase (SOD). Why is SOD a dimeric enzyme?
    Banci L; Benedetto M; Bertini I; Del Conte R; Piccioli M; Viezzoli MS
    Biochemistry; 1998 Aug; 37(34):11780-91. PubMed ID: 9718300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adding a Second Quinol to a Redox-Responsive MRI Contrast Agent Improves Its Relaxivity Response to H
    Yu M; Ward MB; Franke A; Ambrose SL; Whaley ZL; Bradford TM; Gorden JD; Beyers RJ; Cattley RC; Ivanović-Burmazović I; Schwartz DD; Goldsmith CR
    Inorg Chem; 2017 Mar; 56(5):2812-2826. PubMed ID: 28191846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight into the structure and mechanism of nickel-containing superoxide dismutase derived from peptide-based mimics.
    Shearer J
    Acc Chem Res; 2014 Aug; 47(8):2332-41. PubMed ID: 24825124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen peroxide damages the zinc-binding site of zinc-deficient Cu,Zn superoxide dismutase.
    Sampson JB; Beckman JS
    Arch Biochem Biophys; 2001 Aug; 392(1):8-13. PubMed ID: 11469788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mononuclear Ni(II) Complexes with a S3O Coordination Sphere Based on a Tripodal Cysteine-Rich Ligand: pH Tuning of the Superoxide Dismutase Activity.
    Domergue J; Pécaut J; Proux O; Lebrun C; Gateau C; Le Goff A; Maldivi P; Duboc C; Delangle P
    Inorg Chem; 2019 Oct; 58(19):12775-12785. PubMed ID: 31545024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the mechanism of the Mn3(+)-induced neurotoxicity of dopamine:prevention of quinone-derived oxygen toxicity by DT diaphorase and superoxide dismutase.
    Segura-Aguilar J; Lind C
    Chem Biol Interact; 1989; 72(3):309-24. PubMed ID: 2557982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Macrocyclic Ligand Framework That Improves Both the Stability and
    Karbalaei S; Knecht E; Franke A; Zahl A; Saunders AC; Pokkuluri PR; Beyers RJ; Ivanović-Burmazović I; Goldsmith CR
    Inorg Chem; 2021 Jun; 60(12):8368-8379. PubMed ID: 34042423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel square-planar Ni(II) complex with an amino-carboxamido-dithiolato-type ligand as an active-site model of NiSOD.
    Nakane D; Wasada-Tsutsui Y; Funahashi Y; Hatanaka T; Ozawa T; Masuda H
    Inorg Chem; 2014 Jul; 53(13):6512-23. PubMed ID: 24940594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiol oxidation coupled to DT-diaphorase-catalysed reduction of diaziquone. Reductive and oxidative pathways of diaziquone semiquinone modulated by glutathione and superoxide dismutase.
    Ordoñez ID; Cadenas E
    Biochem J; 1992 Sep; 286 ( Pt 2)(Pt 2):481-90. PubMed ID: 1530580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiol oxidase activity of copper, zinc superoxide dismutase.
    Winterbourn CC; Peskin AV; Parsons-Mair HN
    J Biol Chem; 2002 Jan; 277(3):1906-11. PubMed ID: 11698397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic and computational investigation of second-sphere contributions to redox tuning in Escherichia coli iron superoxide dismutase.
    Grove LE; Xie J; Yikilmaz E; Miller AF; Brunold TC
    Inorg Chem; 2008 May; 47(10):3978-92. PubMed ID: 18433120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.