BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36446009)

  • 1. LSTM-Modeling of Emotion Recognition Using Peripheral Physiological Signals in Naturalistic Conversations.
    Zitouni MS; Park CY; Lee U; Hadjileontiadis LJ; Khandoker A
    IEEE J Biomed Health Inform; 2023 Feb; 27(2):912-923. PubMed ID: 36446009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arousal-Valence Classification from Peripheral Physiological Signals Using Long Short-Term Memory Networks.
    Zitouni MS; Park CY; Lee U; Hadjileontiadis L; Khandoker A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():686-689. PubMed ID: 34891385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the accuracy of electroencephalogram-based emotion recognition through Long Short-Term Memory recurrent deep neural networks.
    Yousefi MR; Dehghani A; Taghaavifar H
    Front Hum Neurosci; 2023; 17():1174104. PubMed ID: 37881690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CNN and LSTM-Based Emotion Charting Using Physiological Signals.
    Dar MN; Akram MU; Khawaja SG; Pujari AN
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32823807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning-Based Approach for Emotion Recognition Using Electroencephalography (EEG) Signals Using Bi-Directional Long Short-Term Memory (Bi-LSTM).
    Algarni M; Saeed F; Al-Hadhrami T; Ghabban F; Al-Sarem M
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosignal-Based Multimodal Emotion Recognition in a Valence-Arousal Affective Framework Applied to Immersive Video Visualization.
    Pinto J; Fred A; da Silva HP
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3577-3583. PubMed ID: 31946651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated accurate emotion recognition system using rhythm-specific deep convolutional neural network technique with multi-channel EEG signals.
    Maheshwari D; Ghosh SK; Tripathy RK; Sharma M; Acharya UR
    Comput Biol Med; 2021 Jul; 134():104428. PubMed ID: 33984749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emotion Recognition Using Electrodermal Activity Signals and Multiscale Deep Convolution Neural Network.
    Ganapathy N; Swaminathan R
    Stud Health Technol Inform; 2019; 258():140. PubMed ID: 30942731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting Exact Valence and Arousal Values from EEG.
    Galvão F; Alarcão SM; Fonseca MJ
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34068895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Ensemble Learning Method for Emotion Charting Using Multimodal Physiological Signals.
    Awan AW; Usman SM; Khalid S; Anwar A; Alroobaea R; Hussain S; Almotiri J; Ullah SS; Akram MU
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding auditory-evoked response in affective states using wearable around-ear EEG system.
    Choi J; Kaongoen N; Choi H; Kim M; Kim BH; Jo S
    Biomed Phys Eng Express; 2023 Aug; 9(5):. PubMed ID: 37591224
    [No Abstract]   [Full Text] [Related]  

  • 12. A Comparative Study of Arousal and Valence Dimensional Variations for Emotion Recognition Using Peripheral Physiological Signals Acquired from Wearable Sensors
    Alskafi FA; Khandoker AH; Jelinek HF
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1104-1107. PubMed ID: 34891480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EEG Emotion Recognition via Graph-based Spatio-Temporal Attention Neural Networks.
    Sartipi S; Torkamani-Azar M; Cetin M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():571-574. PubMed ID: 34891358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Using electroencephalogram for emotion recognition based on filter-bank long short-term memory networks].
    Wang J; Wang Y; Yao L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Jun; 38(3):447-454. PubMed ID: 34180189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emotion recognition through EEG phase space dynamics and Dempster-Shafer theory.
    Zangeneh Soroush M; Maghooli K; Setarehdan SK; Nasrabadi AM
    Med Hypotheses; 2019 Jun; 127():34-45. PubMed ID: 31088645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subject-independent emotion recognition based on physiological signals: a three-stage decision method.
    Chen J; Hu B; Wang Y; Moore P; Dai Y; Feng L; Ding Z
    BMC Med Inform Decis Mak; 2017 Dec; 17(Suppl 3):167. PubMed ID: 29297324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feature selection for multimodal emotion recognition in the arousal-valence space.
    Torres CA; Orozco ÁA; Álvarez MA
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4330-3. PubMed ID: 24110691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEG-Based Emotion Recognition Using Quadratic Time-Frequency Distribution.
    Alazrai R; Homoud R; Alwanni H; Daoud MI
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30127311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arousal and Valence Classification Model Based on Long Short-Term Memory and DEAP Data for Mental Healthcare Management.
    Choi EJ; Kim DK
    Healthc Inform Res; 2018 Oct; 24(4):309-316. PubMed ID: 30443419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EEG-based emotion classification using LSTM under new paradigm.
    Ahmed MZI; Sinha N
    Biomed Phys Eng Express; 2021 Sep; 7(6):. PubMed ID: 34534973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.