BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36446009)

  • 21. Predicting Emotion with Biosignals: A Comparison of Classification and Regression Models for Estimating Valence and Arousal Level Using Wearable Sensors.
    Siirtola P; Tamminen S; Chandra G; Ihalapathirana A; Röning J
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Harnessing Wearable Devices for Emotional Intelligence: Therapeutic Applications in Digital Health.
    Arabian H; Abdulbaki Alshirbaji T; Schmid R; Wagner-Hartl V; Chase JG; Moeller K
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fused CNN-LSTM deep learning emotion recognition model using electroencephalography signals.
    Ramzan M; Dawn S
    Int J Neurosci; 2023 Jun; 133(6):587-597. PubMed ID: 34121598
    [No Abstract]   [Full Text] [Related]  

  • 24. Interpretable Cross-Subject EEG-Based Emotion Recognition Using Channel-Wise Features.
    Jin L; Kim EY
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33255374
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Affective computing in virtual reality: emotion recognition from brain and heartbeat dynamics using wearable sensors.
    Marín-Morales J; Higuera-Trujillo JL; Greco A; Guixeres J; Llinares C; Scilingo EP; Alcañiz M; Valenza G
    Sci Rep; 2018 Sep; 8(1):13657. PubMed ID: 30209261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CorrNet: Fine-Grained Emotion Recognition for Video Watching Using Wearable Physiological Sensors.
    Zhang T; El Ali A; Wang C; Hanjalic A; Cesar P
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374281
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heart sound signals can be used for emotion recognition.
    Xiefeng C; Wang Y; Dai S; Zhao P; Liu Q
    Sci Rep; 2019 Apr; 9(1):6486. PubMed ID: 31019217
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Online Learning for Wearable EEG-Based Emotion Classification.
    Moontaha S; Schumann FEF; Arnrich B
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904590
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel signal to image transformation and feature level fusion for multimodal emotion recognition.
    Hatipoglu Yilmaz B; Kose C
    Biomed Tech (Berl); 2021 Aug; 66(4):353-362. PubMed ID: 33823091
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Emotion recognition using spatial-temporal EEG features through convolutional graph attention network.
    Li Z; Zhang G; Wang L; Wei J; Dang J
    J Neural Eng; 2023 Feb; 20(1):. PubMed ID: 36720164
    [No Abstract]   [Full Text] [Related]  

  • 31. Emotion Assessment Using Feature Fusion and Decision Fusion Classification Based on Physiological Data: Are We There Yet?
    Bota P; Wang C; Fred A; Silva H
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32825624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automated Affective Computing Based on Bio-Signals Analysis and Deep Learning Approach.
    Filippini C; Di Crosta A; Palumbo R; Perpetuini D; Cardone D; Ceccato I; Di Domenico A; Merla A
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270936
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Graph Theoretical Analysis of EEG Functional Connectivity Patterns and Fusion with Physiological Signals for Emotion Recognition.
    Xefteris VR; Tsanousa A; Georgakopoulou N; Diplaris S; Vrochidis S; Kompatsiaris I
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365896
    [TBL] [Abstract][Full Text] [Related]  

  • 34. K-EmoCon, a multimodal sensor dataset for continuous emotion recognition in naturalistic conversations.
    Park CY; Cha N; Kang S; Kim A; Khandoker AH; Hadjileontiadis L; Oh A; Jeong Y; Lee U
    Sci Data; 2020 Sep; 7(1):293. PubMed ID: 32901038
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SAE+LSTM: A New Framework for Emotion Recognition From Multi-Channel EEG.
    Xing X; Li Z; Xu T; Shu L; Hu B; Xu X
    Front Neurorobot; 2019; 13():37. PubMed ID: 31244638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. EEG-Based Emotion Classification Using Long Short-Term Memory Network with Attention Mechanism.
    Kim Y; Choi A
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33255539
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Emotion recognition from single-trial EEG based on kernel Fisher's emotion pattern and imbalanced quasiconformal kernel support vector machine.
    Liu YH; Wu CT; Cheng WT; Hsiao YT; Chen PM; Teng JT
    Sensors (Basel); 2014 Jul; 14(8):13361-88. PubMed ID: 25061837
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple-output support vector machine regression with feature selection for arousal/valence space emotion assessment.
    Torres-Valencia CA; Álvarez MA; Orozco-Gutiérrez AA
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():970-3. PubMed ID: 25570122
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial-frequency-temporal convolutional recurrent network for olfactory-enhanced EEG emotion recognition.
    Xing M; Hu S; Wei B; Lv Z
    J Neurosci Methods; 2022 Jul; 376():109624. PubMed ID: 35588948
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A EEG-based emotion recognition model with rhythm and time characteristics.
    Yan J; Chen S; Deng S
    Brain Inform; 2019 Sep; 6(1):7. PubMed ID: 31549331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.