These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36446017)

  • 1. Individualized Statistical Modeling of Lesions in Fundus Images for Anomaly Detection.
    Du Y; Wang L; Meng D; Chen B; An C; Liu H; Liu W; Xu Y; Fan Y; Feng D; Wang X; Xu X
    IEEE Trans Med Imaging; 2023 Apr; 42(4):1185-1196. PubMed ID: 36446017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weakly Supervised Lesion Detection From Fundus Images.
    Wang R; Chen B; Meng D; Wang L
    IEEE Trans Med Imaging; 2019 Jun; 38(6):1501-1512. PubMed ID: 30530359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomaly detection in fundus images by self-adaptive decomposition via local and color based sparse coding.
    Du Y; Wang L; Chen B; An C; Liu H; Fan Y; Wang X; Xu X
    Biomed Opt Express; 2022 Aug; 13(8):4261-4277. PubMed ID: 36032576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood Vessel Segmentation of Fundus Images by Major Vessel Extraction and Subimage Classification.
    Roychowdhury S; Koozekanani DD; Parhi KK
    IEEE J Biomed Health Inform; 2015 May; 19(3):1118-28. PubMed ID: 25014980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective Fundus Image Decomposition for the Detection of Red Lesions and Hard Exudates to Aid in the Diagnosis of Diabetic Retinopathy.
    Romero-Oraá R; García M; Oraá-Pérez J; López-Gálvez MI; Hornero R
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33207825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and localization of fovea on colour fundus images using blur scales.
    Ganesan K; Acharya RU; Chua CK; Laude A
    Proc Inst Mech Eng H; 2014 Sep; 228(9):962-70. PubMed ID: 25234036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and Validation of a Deep Learning System to Detect Glaucomatous Optic Neuropathy Using Fundus Photographs.
    Liu H; Li L; Wormstone IM; Qiao C; Zhang C; Liu P; Li S; Wang H; Mou D; Pang R; Yang D; Zangwill LM; Moghimi S; Hou H; Bowd C; Jiang L; Chen Y; Hu M; Xu Y; Kang H; Ji X; Chang R; Tham C; Cheung C; Ting DSW; Wong TY; Wang Z; Weinreb RN; Xu M; Wang N
    JAMA Ophthalmol; 2019 Dec; 137(12):1353-1360. PubMed ID: 31513266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-distribution discrepancy with self-supervised refinement for anomaly detection in medical images.
    Cai Y; Chen H; Yang X; Zhou Y; Cheng KT
    Med Image Anal; 2023 May; 86():102794. PubMed ID: 36934507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of an Anomaly Detection Model to Screen for Ocular Diseases Using Color Retinal Fundus Images: Design and Evaluation Study.
    Han Y; Li W; Liu M; Wu Z; Zhang F; Liu X; Tao L; Li X; Guo X
    J Med Internet Res; 2021 Jul; 23(7):e27822. PubMed ID: 34255681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated detection of fovea in fundus images based on vessel-free zone and adaptive Gaussian template.
    Kao EF; Lin PC; Chou MC; Jaw TS; Liu GC
    Comput Methods Programs Biomed; 2014 Nov; 117(2):92-103. PubMed ID: 25168776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical morphology for microaneurysm detection in fundus images.
    Joshi S; Karule PT
    Eur J Ophthalmol; 2020 Sep; 30(5):1135-1142. PubMed ID: 31018679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep learning-based framework for retinal fundus image enhancement.
    Lee KG; Song SJ; Lee S; Yu HG; Kim DI; Lee KM
    PLoS One; 2023; 18(3):e0282416. PubMed ID: 36928209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microaneurysms detection in color fundus images using machine learning based on directional local contrast.
    Long S; Chen J; Hu A; Liu H; Chen Z; Zheng D
    Biomed Eng Online; 2020 Apr; 19(1):21. PubMed ID: 32295576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Automated System for the Detection and Classification of Retinal Changes Due to Red Lesions in Longitudinal Fundus Images.
    Adal KM; van Etten PG; Martinez JP; Rouwen KW; Vermeer KA; van Vliet LJ
    IEEE Trans Biomed Eng; 2018 Jun; 65(6):1382-1390. PubMed ID: 28922110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Weakly Supervised Multitask Architecture for Retinal Lesions Segmentation on Fundus Images.
    Playout C; Duval R; Cheriet F
    IEEE Trans Med Imaging; 2019 Oct; 38(10):2434-2444. PubMed ID: 30908197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated method for real-time AMD screening of fundus images dedicated for mobile devices.
    Sayadia SB; Elloumi Y; Kachouri R; Akil M; Abdallah AB; Bedoui MH
    Med Biol Eng Comput; 2022 May; 60(5):1449-1479. PubMed ID: 35304672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmenting retinal vessels with revised top-bottom-hat transformation and flattening of minimum circumscribed ellipse.
    Wang W; Wang W; Hu Z
    Med Biol Eng Comput; 2019 Jul; 57(7):1481-1496. PubMed ID: 30903529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particle swarm optimization method for small retinal vessels detection on multiresolution fundus images.
    Khomri B; Christodoulidis A; Djerou L; Babahenini MC; Cheriet F
    J Biomed Opt; 2018 May; 23(5):1-13. PubMed ID: 29749141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of Glaucoma Stages Using Image Empirical Mode Decomposition from Fundus Images.
    Parashar D; Agrawal DK
    J Digit Imaging; 2022 Oct; 35(5):1283-1292. PubMed ID: 35581407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ensemble deep learning based approach for red lesion detection in fundus images.
    Orlando JI; Prokofyeva E; Del Fresno M; Blaschko MB
    Comput Methods Programs Biomed; 2018 Jan; 153():115-127. PubMed ID: 29157445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.