BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 36446511)

  • 21. 3D Printing of Cytocompatible Gelatin-Cellulose-Alginate Blend Hydrogels.
    Erkoc P; Uvak I; Nazeer MA; Batool SR; Odeh YN; Akdogan O; Kizilel S
    Macromol Biosci; 2020 Oct; 20(10):e2000106. PubMed ID: 32790232
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermoresponsive and Injectable Composite Hydrogels of Cellulose Nanocrystals and Pluronic F127.
    Kushan E; Senses E
    ACS Appl Bio Mater; 2021 Apr; 4(4):3507-3517. PubMed ID: 35014435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multifunctional bioactive chitosan/cellulose nanocrystal scaffolds eradicate bacterial growth and sustain drug delivery.
    Patel DK; Dutta SD; Ganguly K; Lim KT
    Int J Biol Macromol; 2021 Feb; 170():178-188. PubMed ID: 33359257
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs.
    Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellulose Nanocrystal Reinforced Collagen-Based Nanocomposite Hydrogel with Self-Healing and Stress-Relaxation Properties for Cell Delivery.
    Zhang S; Huang D; Lin H; Xiao Y; Zhang X
    Biomacromolecules; 2020 Jun; 21(6):2400-2408. PubMed ID: 32343129
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lignin-coated cellulose nanocrystal filled methacrylate composites prepared via 3D stereolithography printing: Mechanical reinforcement and thermal stabilization.
    Feng X; Yang Z; Chmely S; Wang Q; Wang S; Xie Y
    Carbohydr Polym; 2017 Aug; 169():272-281. PubMed ID: 28504146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation and properties of cellulose nanocrystal-based ion-conductive hydrogels.
    Huang X; Ao X; Yang L; Ye J; Wang C
    RSC Adv; 2022 Dec; 13(1):527-533. PubMed ID: 36605624
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tissue Response and Biodistribution of Injectable Cellulose Nanocrystal Composite Hydrogels.
    De France KJ; Badv M; Dorogin J; Siebers E; Panchal V; Babi M; Moran-Mirabal J; Lawlor M; Cranston ED; Hoare T
    ACS Biomater Sci Eng; 2019 May; 5(5):2235-2246. PubMed ID: 33405775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-resolution 3D printing of xanthan gum/nanocellulose bio-inks.
    Baniasadi H; Kimiaei E; Polez RT; Ajdary R; Rojas OJ; Österberg M; Seppälä J
    Int J Biol Macromol; 2022 Jun; 209(Pt B):2020-2031. PubMed ID: 35500781
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tuning the Nanotopography and Chemical Functionality of 3D Printed Scaffolds through Cellulose Nanocrystal Coatings.
    Babi M; Riesco R; Boyer L; Fatona A; Accardo A; Malaquin L; Moran-Mirabal J
    ACS Appl Bio Mater; 2021 Dec; 4(12):8443-8455. PubMed ID: 35005920
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electroactive Hydrogels Made with Polyvinyl Alcohol/Cellulose Nanocrystals.
    Jayaramudu T; Ko HU; Kim HC; Kim JW; Muthoka RM; Kim J
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30181521
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores.
    Huang L; Du X; Fan S; Yang G; Shao H; Li D; Cao C; Zhu Y; Zhu M; Zhang Y
    Carbohydr Polym; 2019 Oct; 221():146-156. PubMed ID: 31227153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microscale 3D Printing and Tuning of Cellulose Nanocrystals Reinforced Polymer Nanocomposites.
    Groetsch A; Stelzl S; Nagel Y; Kochetkova T; Scherrer NC; Ovsianikov A; Michler J; Pethö L; Siqueira G; Nyström G; Schwiedrzik J
    Small; 2023 Jan; 19(3):e2202470. PubMed ID: 36449596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent advances in high-strength and elastic hydrogels for 3D printing in biomedical applications.
    Xu C; Dai G; Hong Y
    Acta Biomater; 2019 Sep; 95():50-59. PubMed ID: 31125728
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of composite hydrogel based on hydroxyapatite mineralization over pectin reinforced with cellulose nanocrystal.
    Catori DM; Fragal EH; Messias I; Garcia FP; Nakamura CV; Rubira AF
    Int J Biol Macromol; 2021 Jan; 167():726-735. PubMed ID: 33285200
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mapping 3D Printability of Ionically Cross-Linked Cellulose Nanocrystal Inks: Architecting from Nano- to Macroscale Structures.
    Amini M; Kamkar M; Ahmadijokani F; Ghaderi S; Rojas OJ; Hosseini H; Arjmand M
    Biomacromolecules; 2023 Feb; 24(2):775-788. PubMed ID: 36546647
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D-Printed Poly(3-hydroxybutyrate-
    Giubilini A; Messori M; Bondioli F; Minetola P; Iuliano L; Nyström G; Maniura-Weber K; Rottmar M; Siqueira G
    Biomacromolecules; 2023 Sep; 24(9):3961-3971. PubMed ID: 37589321
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D Printing of Hybrid-Hydrogel Materials for Tissue Engineering: a Critical Review.
    Tajik S; Garcia CN; Gillooley S; Tayebi L
    Regen Eng Transl Med; 2023 Mar; 9(1):29-41. PubMed ID: 37193257
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A review on cellulose nanocrystals as promising biocompounds for the synthesis of nanocomposite hydrogels.
    Shojaeiarani J; Bajwa D; Shirzadifar A
    Carbohydr Polym; 2019 Jul; 216():247-259. PubMed ID: 31047064
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rheological properties and 3D-printability of cellulose nanocrystals/deep eutectic solvent electroactive ion gels.
    Vorobiov VK; Sokolova MP; Bobrova NV; Elokhovsky VY; Smirnov MA
    Carbohydr Polym; 2022 Aug; 290():119475. PubMed ID: 35550751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.