These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36446635)

  • 1. Pairing d-Band Center of Metal Sites with π-Orbital of Alkynes for Efficient Electrocatalytic Alkyne Semi-Hydrogenation.
    Li J; Guo Y; Chang S; Lin J; Wang Y; Liu Z; Wu Y; Zhang J
    Small; 2023 Feb; 19(5):e2205845. PubMed ID: 36446635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Conductive 3D Dual-Metal π-d Conjugated Metal-Organic Framework Fe
    Lin L; Zhang C; Yin L; Sun Y; Xing D; Liu Y; Wang P; Wang Z; Zheng Z; Cheng H; Dai Y; Huang B
    Small; 2024 May; 20(22):e2309256. PubMed ID: 38133479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alloying and confinement effects on hierarchically nanoporous CuAu for efficient electrocatalytic semi-hydrogenation of terminal alkynes.
    Meng L; Kao CW; Wang Z; Ma J; Huang P; Zhao N; Zheng X; Peng M; Lu YR; Tan Y
    Nat Commun; 2024 Jul; 15(1):5999. PubMed ID: 39013955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near 100% Conversion of Acetylene to High-purity Ethylene at Ampere-Level Current.
    Wu Z; Zhang J; Guan Q; Liu X; Xiong H; Chen S; Hong W; Li D; Lei Y; Deng S; Wang J; Wang G
    Adv Mater; 2024 Oct; 36(41):e2408681. PubMed ID: 39155581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Dimensional Conductive Metal-Organic Frameworks as Highly Efficient Electrocatalysts for Lithium-Sulfur Batteries.
    Wang J; Li F; Liu Z; Dai Z; Gao S; Zhao M
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61205-61214. PubMed ID: 34918904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in Selective Electrocatalytic Hydrogenation of Alkynes to Alkenes.
    Liu Z; Zhang L; Ren Z; Zhang J
    Chemistry; 2023 Mar; 29(15):e202202979. PubMed ID: 36504420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient electrocatalytic acetylene semihydrogenation by electron-rich metal sites in N-heterocyclic carbene metal complexes.
    Zhang L; Chen Z; Liu Z; Bu J; Ma W; Yan C; Bai R; Lin J; Zhang Q; Liu J; Wang T; Zhang J
    Nat Commun; 2021 Nov; 12(1):6574. PubMed ID: 34772929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Organic Molecular Mimetic Metal-Free Heterogeneous Catalyst for Electrocatalytic Alkyne Semihydrogenation.
    Song Z; Yang R; Liu X; Zhang B; Wu Y
    Angew Chem Int Ed Engl; 2024 Oct; 63(42):e202410200. PubMed ID: 39008407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deprotonated 2-thiolimidazole serves as a metal-free electrocatalyst for selective acetylene hydrogenation.
    Zhang L; Bai R; Lin J; Bu J; Liu Z; An S; Wei Z; Zhang J
    Nat Chem; 2024 Jun; 16(6):893-900. PubMed ID: 38641678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designed Nanomaterials for Electrocatalytic Organic Hydrogenation Using Water as the Hydrogen Source.
    Liu C; Wu Y; Zhao B; Zhang B
    Acc Chem Res; 2023 Jul; 56(13):1872-1883. PubMed ID: 37316974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Robust n-n Heterojunction: CuN and BN Boosting for Ambient Electrocatalytic Nitrogen Reduction to Ammonia.
    Liu J; He L; Zhao S; Hu L; Li S; Zhang Z; Du M
    Small; 2023 Oct; 19(42):e2302600. PubMed ID: 37322392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly efficient ethylene production via electrocatalytic hydrogenation of acetylene under mild conditions.
    Wang S; Uwakwe K; Yu L; Ye J; Zhu Y; Hu J; Chen R; Zhang Z; Zhou Z; Li J; Xie Z; Deng D
    Nat Commun; 2021 Dec; 12(1):7072. PubMed ID: 34873161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-organic Kagome lattices M3(2,3,6,7,10,11-hexaiminotriphenylene)2 (M = Ni and Cu): from semiconducting to metallic by metal substitution.
    Chen S; Dai J; Zeng XC
    Phys Chem Chem Phys; 2015 Feb; 17(8):5954-8. PubMed ID: 25636056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly selective electrocatalytic alkynol semi-hydrogenation for continuous production of alkenols.
    Bu J; Chang S; Li J; Yang S; Ma W; Liu Z; An S; Wang Y; Li Z; Zhang J
    Nat Commun; 2023 Mar; 14(1):1533. PubMed ID: 36941296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-Organic Framework-Derived Ni-S/C Catalysts for Selective Alkyne Hydrogenation.
    Li N; Weng S; McCue AJ; Song Y; He Y; Liu Y; Feng J; Li D
    ACS Appl Mater Interfaces; 2023 Oct; 15(41):48135-48146. PubMed ID: 37792067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cu Single-Atom Catalysts for High-Selectivity Electrocatalytic Acetylene Semihydrogenation.
    Jiang X; Tang L; Dong L; Sheng X; Zhang W; Liu Z; Shen J; Jiang H; Li C
    Angew Chem Int Ed Engl; 2023 Aug; 62(33):e202307848. PubMed ID: 37378584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen Spillover Mechanism at the Metal-Metal Interface in Electrocatalytic Hydrogenation.
    Li Y; Li L; Xu S; Cui K; Wang T; Jiang Z; Li J
    Angew Chem Int Ed Engl; 2024 Sep; 63(38):e202407810. PubMed ID: 38957933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semi-hydrogenation with water.
    Wu Y; Liu C; Wang C; Yu Y; Shi Y; Zhang B
    Nat Commun; 2021 Jun; 12(1):3881. PubMed ID: 34162851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyoxometalate-Based Metal-Organic Framework as Molecular Sieve for Highly Selective Semi-Hydrogenation of Acetylene on Isolated Single Pd Atom Sites.
    Liu Y; Wang B; Fu Q; Liu W; Wang Y; Gu L; Wang D; Li Y
    Angew Chem Int Ed Engl; 2021 Oct; 60(41):22522-22528. PubMed ID: 34374208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confined Synthesis of Oriented Two-Dimensional Ni
    Liu XH; Yang YW; Liu XM; Hao Q; Wang LM; Sun B; Wu J; Wang D
    Langmuir; 2020 Jul; 36(26):7528-7532. PubMed ID: 32513012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.