These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36446813)

  • 41. In vitro flow study in a compliant abdominal aorta phantom with a non-Newtonian blood-mimicking fluid.
    Moravia A; Simoëns S; El Hajem M; Bou-Saïd B; Kulisa P; Della-Schiava N; Lermusiaux P
    J Biomech; 2022 Jan; 130():110899. PubMed ID: 34923186
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90 degrees curved tube.
    Gijsen FJ; Allanic E; van de Vosse FN; Janssen JD
    J Biomech; 1999 Jul; 32(7):705-13. PubMed ID: 10400358
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rheological effects of blood in a nonplanar distal end-to-side anastomosis.
    Wang QQ; Ping BH; Xu QB; Wang W
    J Biomech Eng; 2008 Oct; 130(5):051009. PubMed ID: 19045516
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Non-Newtonian Blood Modeling in Intracranial Aneurysm Hemodynamics: Impact on the Wall Shear Stress and Oscillatory Shear Index Metrics for Ruptured and Unruptured Cases.
    Oliveira IL; Santos GB; Gasche JL; Militzer J; Baccin CE
    J Biomech Eng; 2021 Jul; 143(7):. PubMed ID: 33729441
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evidence for non-Newtonian behavior of intracranial blood flow from Doppler ultrasonography measurements.
    Saqr KM; Mansour O; Tupin S; Hassan T; Ohta M
    Med Biol Eng Comput; 2019 May; 57(5):1029-1036. PubMed ID: 30523533
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fluid structure interaction versus rigid-wall approach in the study of the symptomatic stenosed carotid artery: Importance of wall compliance and resilience of loose connective tissue.
    Jodko D; Jeckowski M; Tyfa Z
    Int J Numer Method Biomed Eng; 2022 Aug; 38(8):e3630. PubMed ID: 35593678
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Non-Newtonian rheology in suspension cell cultures significantly impacts bioreactor shear stress quantification.
    Wyma A; Martin-Alarcon L; Walsh T; Schmidt TA; Gates ID; Kallos MS
    Biotechnol Bioeng; 2018 Aug; 115(8):2101-2113. PubMed ID: 29704461
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Variations in pulsatile flow around stenosed microchannel depending on viscosity.
    Hong H; Song JM; Yeom E
    PLoS One; 2019; 14(1):e0210993. PubMed ID: 30677055
    [TBL] [Abstract][Full Text] [Related]  

  • 50. LES of non-Newtonian physiological blood flow in a model of arterial stenosis.
    Molla MM; Paul MC
    Med Eng Phys; 2012 Oct; 34(8):1079-87. PubMed ID: 22153320
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hemodynamic characteristics in a cerebral aneurysm model using non-Newtonian blood analogues.
    Yi H; Yang Z; Johnson M; Bramlage L; Ludwig B
    Phys Fluids (1994); 2022 Oct; 34(10):103101. PubMed ID: 36212224
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of a general method for designing microvascular networks using distribution of wall shear stress.
    Sayed Razavi M; Shirani E
    J Biomech; 2013 Sep; 46(13):2303-9. PubMed ID: 23891174
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Numerical Simulation of the blood flow behavior in the circle of  Willis.
    Razavi SE; Sahebjam R
    Bioimpacts; 2014; 4(2):89-94. PubMed ID: 25035852
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Patient-Specific Computational Fluid Dynamics in Ruptured Posterior Communicating Aneurysms Using Measured Non-Newtonian Viscosity : A Preliminary Study.
    Lee UY; Jung J; Kwak HS; Lee DH; Chung GH; Park JS; Koh EJ
    J Korean Neurosurg Soc; 2019 Mar; 62(2):183-192. PubMed ID: 30840973
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spatial and phasic oscillation of non-Newtonian wall shear stress in human left coronary artery bifurcation: an insight to atherogenesis.
    Soulis JV; Giannoglou GD; Chatzizisis YS; Farmakis TM; Giannakoulas GA; Parcharidis GE; Louridas GE
    Coron Artery Dis; 2006 May; 17(4):351-8. PubMed ID: 16707958
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Non-Newtonian blood flow in human right coronary arteries: transient simulations.
    Johnston BM; Johnston PR; Corney S; Kilpatrick D
    J Biomech; 2006; 39(6):1116-28. PubMed ID: 16549100
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Flow investigations in a model of a three-dimensional human artery with Newtonian and non-Newtonian fluids. Part I.
    Moravec S; Liepsch D
    Biorheology; 1983; 20(6):745-59. PubMed ID: 6661526
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effects of non-Newtonian viscoelasticity and wall elasticity on flow at a 90 degrees bifurcation.
    Ku DN; Liepsch D
    Biorheology; 1986; 23(4):359-70. PubMed ID: 3779061
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Blood flow dynamics in saccular aneurysm models of the basilar artery.
    Valencia AA; Guzmán AM; Finol EA; Amon CH
    J Biomech Eng; 2006 Aug; 128(4):516-26. PubMed ID: 16813443
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of anticoagulant treatment in deep vein thrombosis: A patient-specific computational fluid dynamics study.
    Fortuny G; Herrero J; Puigjaner D; Olivé C; Marimon F; Garcia-Bennett J; Rodríguez D
    J Biomech; 2015 Jul; 48(10):2047-53. PubMed ID: 25917201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.