These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36446813)

  • 61. Computational approach to estimating the effects of blood properties on changes in intra-stent flow.
    Benard N; Perrault R; Coisne D
    Ann Biomed Eng; 2006 Aug; 34(8):1259-71. PubMed ID: 16799830
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effect of varying viscosity on two-fluid model of pulsatile blood flow through porous blood vessels: A comparative study.
    Tiwari A; Chauhan SS
    Microvasc Res; 2019 May; 123():99-110. PubMed ID: 30639139
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Numerical investigation of the effects of blood rheology and wall elasticity in abdominal aortic aneurysm under pulsatile flow conditions.
    Bilgi C; Atalık K
    Biorheology; 2019; 56(1):51-71. PubMed ID: 31045509
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Numerical study of the impact of non-Newtonian blood behavior on flow over a two-dimensional backward facing step.
    Choi HW; Barakat AI
    Biorheology; 2005; 42(6):493-509. PubMed ID: 16369086
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2004 Dec; 37(12):1899-911. PubMed ID: 15519598
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Influence of Hemodialysis Catheter Insertion on Hemodynamics in the Central Veins.
    Park MH; Qiu Y; Cao H; Yuan D; Li D; Jiang Y; Peng L; Zheng T
    J Biomech Eng; 2020 Sep; 142(9):. PubMed ID: 32110795
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The influence of the non-Newtonian properties of blood on blood-hammer through the posterior cerebral artery.
    Tazraei P; Riasi A; Takabi B
    Math Biosci; 2015 Jun; 264():119-27. PubMed ID: 25865933
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2006; 39(5):818-32. PubMed ID: 16488221
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Modeling pulsatile flow in aortic aneurysms: effect of non-Newtonian properties of blood.
    Khanafer KM; Gadhoke P; Berguer R; Bull JL
    Biorheology; 2006; 43(5):661-79. PubMed ID: 17047283
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients.
    Wells DR; Archie JP; Kleinstreuer C
    J Vasc Surg; 1996 Apr; 23(4):667-78. PubMed ID: 8627904
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Mathematical analysis of non-Newtonian blood flow in stenosis narrow arteries.
    Sriyab S
    Comput Math Methods Med; 2014; 2014():479152. PubMed ID: 25587350
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Investigating the impact of non-Newtonian blood models within a heart pump.
    Al-Azawy MG; Turan A; Revell A
    Int J Numer Method Biomed Eng; 2017 Jan; 33(1):. PubMed ID: 26919069
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [Non-newtonian behavior of blood and parietal shear stress in a Poiseuille flow].
    Wang X; Stoltz JF
    J Mal Vasc; 1995; 20(2):117-21. PubMed ID: 7650437
    [TBL] [Abstract][Full Text] [Related]  

  • 74. On the characterization of a non-Newtonian blood analog and its response to pulsatile flow downstream of a simplified stenosis.
    Walker AM; Johnston CR; Rival DE
    Ann Biomed Eng; 2014 Jan; 42(1):97-109. PubMed ID: 23975383
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Synergy between shear-induced migration and secondary flows on red blood cells transport in arteries: considerations on oxygen transport.
    Biasetti J; Spazzini PG; Hedin U; Gasser TC
    J R Soc Interface; 2014 Aug; 11(97):20140403. PubMed ID: 24850907
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Atherosclerotic indicators for blood-like fluids in 90-degree arterial-like bifurcations.
    van Wyk S; Prahl Wittberg L; Fuchs L
    Comput Biol Med; 2014 Jul; 50():56-69. PubMed ID: 24835086
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model.
    Gijsen FJ; van de Vosse FN; Janssen JD
    J Biomech; 1999 Jun; 32(6):601-8. PubMed ID: 10332624
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Fluid structure interaction study of non-Newtonian Casson fluid in a bifurcated channel having stenosis with elastic walls.
    Shahzad H; Wang X; Ghaffari A; Iqbal K; Hafeez MB; Krawczuk M; Wojnicz W
    Sci Rep; 2022 Jul; 12(1):12219. PubMed ID: 35851297
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effect of stenosis and dilatation on the hemodynamic parameters associated with left coronary artery.
    Sandeep S; Shine SR
    Comput Methods Programs Biomed; 2021 Jun; 204():106052. PubMed ID: 33789214
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Wall shear stress variations and unsteadiness of pulsatile blood-like flows in 90-degree bifurcations.
    van Wyk S; Prahl Wittberg L; Fuchs L
    Comput Biol Med; 2013 Sep; 43(8):1025-36. PubMed ID: 23816175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.