These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 36446849)

  • 41. Crosstalk between skeletal and neural tissues is critical for skeletal health.
    Abeynayake N; Arthur A; Gronthos S
    Bone; 2021 Jan; 142():115645. PubMed ID: 32949783
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The osteogenic-angiogenic interface: novel insights into the biology of bone formation and fracture repair.
    Towler DA
    Curr Osteoporos Rep; 2008 Jun; 6(2):67-71. PubMed ID: 18778566
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of vascular endothelial growth factor in ossification.
    Yang YQ; Tan YY; Wong R; Wenden A; Zhang LK; Rabie AB
    Int J Oral Sci; 2012 Jun; 4(2):64-8. PubMed ID: 22722639
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The role of vasculature in bone development, regeneration and proper systemic functioning.
    Filipowska J; Tomaszewski KA; Niedźwiedzki Ł; Walocha JA; Niedźwiedzki T
    Angiogenesis; 2017 Aug; 20(3):291-302. PubMed ID: 28194536
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Salidroside improves angiogenesis-osteogenesis coupling by regulating the HIF-1α/VEGF signalling pathway in the bone environment.
    Guo Q; Yang J; Chen Y; Jin X; Li Z; Wen X; Xia Q; Wang Y
    Eur J Pharmacol; 2020 Oct; 884():173394. PubMed ID: 32730833
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Endothelial progenitor cells from peripheral blood support bone regeneration by provoking an angiogenic response.
    Goerke SM; Obermeyer J; Plaha J; Stark GB; Finkenzeller G
    Microvasc Res; 2015 Mar; 98():40-7. PubMed ID: 25497270
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CD31hiEmcnhi Vessels Support New Trabecular Bone Formation at the Frontier Growth Area in the Bone Defect Repair Process.
    Wang J; Gao Y; Cheng P; Li D; Jiang H; Ji C; Zhang S; Shen C; Li J; Song Y; Cao T; Wang C; Yang L; Pei G
    Sci Rep; 2017 Jul; 7(1):4990. PubMed ID: 28694480
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Endothelial cells produce angiocrine factors to regulate bone and cartilage via versatile mechanisms.
    Zhu S; Bennett S; Kuek V; Xiang C; Xu H; Rosen V; Xu J
    Theranostics; 2020; 10(13):5957-5965. PubMed ID: 32483430
    [TBL] [Abstract][Full Text] [Related]  

  • 49. GPNMB enhances bone regeneration by promoting angiogenesis and osteogenesis: potential role for tissue engineering bone.
    Hu X; Zhang P; Xu Z; Chen H; Xie X
    J Cell Biochem; 2013 Dec; 114(12):2729-37. PubMed ID: 23794283
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis.
    Ai-Aql ZS; Alagl AS; Graves DT; Gerstenfeld LC; Einhorn TA
    J Dent Res; 2008 Feb; 87(2):107-18. PubMed ID: 18218835
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Blood vessel formation and function in bone.
    Sivaraj KK; Adams RH
    Development; 2016 Aug; 143(15):2706-15. PubMed ID: 27486231
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Functional Relationship between Osteogenesis and Angiogenesis in Tissue Regeneration.
    Diomede F; Marconi GD; Fonticoli L; Pizzicanella J; Merciaro I; Bramanti P; Mazzon E; Trubiani O
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32375269
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sequential changes in vessel formation and micro-vascular function during bone repair.
    Hansen-Algenstaedt N; Joscheck C; Wolfram L; Schaefer C; Müller I; Böttcher A; Deuretzbacher G; Wiesner L; Leunig M; Algenstaedt P; Rüther W
    Acta Orthop; 2006 Jun; 77(3):429-39. PubMed ID: 16819682
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A case of mandible hypoplasia treated with autologous bone graft from mandibular symphysis: Expression of VEGF and receptors in bone regeneration.
    Marini M; Bertolai R; Manetti M; Sgambati E
    Acta Histochem; 2016 Jul; 118(6):652-656. PubMed ID: 27432807
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The osteo-angiogenic signaling crosstalk for bone regeneration: harmony out of complexity.
    Di Maggio N; Banfi A
    Curr Opin Biotechnol; 2022 Aug; 76():102750. PubMed ID: 35841865
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Angiogenic stimulation strategies in bone tissue regeneration.
    Mahapatra C; Kumar P; Paul MK; Kumar A
    Tissue Cell; 2022 Dec; 79():101908. PubMed ID: 36084409
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The endothelium-bone axis in development, homeostasis and bone and joint disease.
    Tuckermann J; Adams RH
    Nat Rev Rheumatol; 2021 Oct; 17(10):608-620. PubMed ID: 34480164
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Supercritical CO
    Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E
    Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Intravital Imaging to Understand Spatiotemporal Regulation of Osteogenesis and Angiogenesis in Cranial Defect Repair and Regeneration.
    Zhang X
    Methods Mol Biol; 2018; 1842():229-239. PubMed ID: 30196414
    [TBL] [Abstract][Full Text] [Related]  

  • 60. DNA aptamer immobilized hydroxyapatite for enhancing angiogenesis and bone regeneration.
    Son J; Kim J; Lee K; Hwang J; Choi Y; Seo Y; Jeon H; Kang HC; Woo HM; Kang BJ; Choi J
    Acta Biomater; 2019 Nov; 99():469-478. PubMed ID: 31494292
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.