These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36447004)

  • 1. Comprehensive examination of radiative electromagnetic flowing of nanofluids with viscous dissipation effect over a vertical accelerated plate.
    Bejawada SG; Reddy YD; Jamshed W; Usman ; Isa SSPM; El Din SM; Guedri K; Rehman MIU
    Sci Rep; 2022 Nov; 12(1):20548. PubMed ID: 36447004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissipative MHD free convective nanofluid flow past a vertical cone under radiative chemical reaction with mass flux.
    Ragulkumar E; Palani G; Sambath P; Chamkha AJ
    Sci Rep; 2023 Feb; 13(1):2878. PubMed ID: 36808145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsteady Radiative Natural Convective MHD Nanofluid Flow Past a Porous Moving Vertical Plate with Heat Source/Sink.
    Anwar T; Kumam P; Shah Z; Watthayu W; Thounthong P
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32075150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impacts of entropy generation in second-grade fuzzy hybrid nanofluids on exponentially permeable stretching/shrinking surface.
    Zulqarnain RM; Nadeem M; Siddique I; Mansha A; Ghallab AS; Samar M
    Sci Rep; 2023 Dec; 13(1):22132. PubMed ID: 38092807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetohydrodynamic double-diffusive peristaltic flow of radiating fourth-grade nanofluid through a porous medium with viscous dissipation and heat generation/absorption.
    Mohamed RA; Abo-Dahab SM; Abd-Alla AM; Soliman MS
    Sci Rep; 2023 Aug; 13(1):13096. PubMed ID: 37567889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double-diffusive peristaltic MHD Sisko nanofluid flow through a porous medium in presence of non-linear thermal radiation, heat generation/absorption, and Joule heating.
    Abo-Dahab SM; Mohamed RA; Abd-Alla AM; Soliman MS
    Sci Rep; 2023 Jan; 13(1):1432. PubMed ID: 36697466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical analysis of a second-grade fuzzy hybrid nanofluid flow and heat transfer over a permeable stretching/shrinking sheet.
    Nadeem M; Siddique I; Awrejcewicz J; Bilal M
    Sci Rep; 2022 Jan; 12(1):1631. PubMed ID: 35102223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Higher order chemical reaction effects on [Formula: see text] nanofluid flow over a vertical plate.
    K P; B RK
    Sci Rep; 2022 Oct; 12(1):17000. PubMed ID: 36220863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing radiative efficiency in MHD micropumps using plasma-infused hybrid bioconvective nanofluids for advanced radiative oncology at tertiary level.
    Abid A; Azad AK; Bhuiyan AA
    Sci Rep; 2023 Oct; 13(1):18452. PubMed ID: 37891218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of entropy production in a bi-convective magnetized and radiative hybrid nanofluid flow using temperature-sensitive base fluid (water) properties.
    Barman T; Roy S; Chamkha AJ
    Sci Rep; 2022 Jul; 12(1):11831. PubMed ID: 35821402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Irreversibility analysis of electromagnetic hybrid nanofluid for Cattaneo-Christov heat flux model using finite element approach.
    Qureshi MA
    Sci Rep; 2023 Mar; 13(1):4288. PubMed ID: 36922630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiative flow of viscous nano-fluid over permeable stretched swirling disk with generalized slip.
    Hussain M; Rasool M; Mehmood A
    Sci Rep; 2022 Jun; 12(1):11038. PubMed ID: 35773464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A finite difference study of radiative mixed convection MHD heat propagating Casson fluid past an accelerating porous plate including viscous dissipation and Joule heating effects.
    Reddy BP; Matao PM; Sunzu JM
    Heliyon; 2024 Apr; 10(7):e28591. PubMed ID: 38576557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulations of heat generation, thermal radiation and thermal transport in water-based nanoparticles: OHAM study.
    Waseem F; Sohail M; Lone SA; Chambashi G
    Sci Rep; 2023 Sep; 13(1):15650. PubMed ID: 37730737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of variable thermal conductivity and viscosity on Casson nanofluid flow with convective heating and velocity slip.
    Gbadeyan JA; Titiloye EO; Adeosun AT
    Heliyon; 2020 Jan; 6(1):e03076. PubMed ID: 31909255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-convective and chemically reactive hybrid nanofluid flow upon a thin stirring needle with viscous dissipation.
    Khan A; Saeed A; Tassaddiq A; Gul T; Kumam P; Ali I; Kumam W
    Sci Rep; 2021 Apr; 11(1):8066. PubMed ID: 33850197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free convective trickling over a porous medium of fractional nanofluid with MHD and heat source/sink.
    Lin Y; Rehman S; Akkurt N; Shedd T; Kamran M; Qureshi MI; Botmart T; Alharbi AN; Farooq A; Khan I
    Sci Rep; 2022 Dec; 12(1):20778. PubMed ID: 36456727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved finite element method for flow, heat and solute transport of Prandtl liquid via heated plate.
    Hafeez MB; Krawczuk M; Jamshed W; Kaneez H; Hussain SM; El Din ESMT
    Sci Rep; 2022 Nov; 12(1):19681. PubMed ID: 36385257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of hybridized nanofluids flowing and heat transfer enhancement via 3-D vertical heated plate using finite element technique.
    Hafeez MB; Krawczuk M; Shahzad H; Pasha AA; Adil M
    Sci Rep; 2022 Jul; 12(1):11658. PubMed ID: 35804039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal Analysis of 3D Electromagnetic Radiative Nanofluid Flow with Suction/Blowing: Darcy-Forchheimer Scheme.
    Alotaibi H; Eid MR
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.