These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 36447334)
1. Antibiotic discovery in the artificial intelligence era. Lluka T; Stokes JM Ann N Y Acad Sci; 2023 Jan; 1519(1):74-93. PubMed ID: 36447334 [TBL] [Abstract][Full Text] [Related]
2. A brief guide to machine learning for antibiotic discovery. Liu G; Stokes JM Curr Opin Microbiol; 2022 Oct; 69():102190. PubMed ID: 35963098 [TBL] [Abstract][Full Text] [Related]
3. Applying Machine Learning for Antibiotic Development and Prediction of Microbial Resistance. Panjla A; Joshi S; Singh G; Bamford SE; Mechler A; Verma S Chem Asian J; 2024 Sep; 19(18):e202400102. PubMed ID: 38948939 [TBL] [Abstract][Full Text] [Related]
4. Antimicrobial resistance crisis: could artificial intelligence be the solution? Liu GY; Yu D; Fan MM; Zhang X; Jin ZY; Tang C; Liu XF Mil Med Res; 2024 Jan; 11(1):7. PubMed ID: 38254241 [TBL] [Abstract][Full Text] [Related]
5. Accelerating antibiotic discovery through artificial intelligence. Melo MCR; Maasch JRMA; de la Fuente-Nunez C Commun Biol; 2021 Sep; 4(1):1050. PubMed ID: 34504303 [TBL] [Abstract][Full Text] [Related]
6. Deep learning tools to accelerate antibiotic discovery. Cesaro A; Bagheri M; Torres M; Wan F; de la Fuente-Nunez C Expert Opin Drug Discov; 2023; 18(11):1245-1257. PubMed ID: 37794737 [TBL] [Abstract][Full Text] [Related]
7. Using computers to ESKAPE the antibiotic resistance crisis. da Silva TH; Hachigian TZ; Lee J; King MD Drug Discov Today; 2022 Feb; 27(2):456-470. PubMed ID: 34688913 [TBL] [Abstract][Full Text] [Related]
8. Artificial intelligence as a smart approach to develop antimicrobial drug molecules: A paradigm to combat drug-resistant infections. Talat A; Khan AU Drug Discov Today; 2023 Apr; 28(4):103491. PubMed ID: 36646245 [TBL] [Abstract][Full Text] [Related]
9. Systems-Level Chemical Biology to Accelerate Antibiotic Drug Discovery. Farha MA; French S; Brown ED Acc Chem Res; 2021 Apr; 54(8):1909-1920. PubMed ID: 33787225 [TBL] [Abstract][Full Text] [Related]
10. Artificial intelligence alphafold model for molecular biology and drug discovery: a machine-learning-driven informatics investigation. Guo SB; Meng Y; Lin L; Zhou ZZ; Li HL; Tian XP; Huang WJ Mol Cancer; 2024 Oct; 23(1):223. PubMed ID: 39369244 [TBL] [Abstract][Full Text] [Related]
11. Applications of machine learning in microbial natural product drug discovery. Arnold A; Alexander J; Liu G; Stokes JM Expert Opin Drug Discov; 2023; 18(11):1259-1272. PubMed ID: 37651150 [TBL] [Abstract][Full Text] [Related]
12. From Data to Decisions: Leveraging Artificial Intelligence and Machine Learning in Combating Antimicrobial Resistance - a Comprehensive Review. de la Lastra JMP; Wardell SJT; Pal T; de la Fuente-Nunez C; Pletzer D J Med Syst; 2024 Aug; 48(1):71. PubMed ID: 39088151 [TBL] [Abstract][Full Text] [Related]
13. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Zhang L; Tan J; Han D; Zhu H Drug Discov Today; 2017 Nov; 22(11):1680-1685. PubMed ID: 28881183 [TBL] [Abstract][Full Text] [Related]
14. Computational biology: Role and scope in taming antimicrobial resistance. Sharma P; Dahiya S; Kaur P; Kapil A Indian J Med Microbiol; 2023; 41():33-38. PubMed ID: 36870746 [TBL] [Abstract][Full Text] [Related]
15. Artificial intelligence in microbial natural product drug discovery: current and emerging role. Sahayasheela VJ; Lankadasari MB; Dan VM; Dastager SG; Pandian GN; Sugiyama H Nat Prod Rep; 2022 Dec; 39(12):2215-2230. PubMed ID: 36017693 [TBL] [Abstract][Full Text] [Related]
16. Rethinking Drug Repositioning and Development with Artificial Intelligence, Machine Learning, and Omics. Koromina M; Pandi MT; Patrinos GP OMICS; 2019 Nov; 23(11):539-548. PubMed ID: 31651216 [TBL] [Abstract][Full Text] [Related]
17. Artificial intelligence for natural product drug discovery. Mullowney MW; Duncan KR; Elsayed SS; Garg N; van der Hooft JJJ; Martin NI; Meijer D; Terlouw BR; Biermann F; Blin K; Durairaj J; Gorostiola González M; Helfrich EJN; Huber F; Leopold-Messer S; Rajan K; de Rond T; van Santen JA; Sorokina M; Balunas MJ; Beniddir MA; van Bergeijk DA; Carroll LM; Clark CM; Clevert DA; Dejong CA; Du C; Ferrinho S; Grisoni F; Hofstetter A; Jespers W; Kalinina OV; Kautsar SA; Kim H; Leao TF; Masschelein J; Rees ER; Reher R; Reker D; Schwaller P; Segler M; Skinnider MA; Walker AS; Willighagen EL; Zdrazil B; Ziemert N; Goss RJM; Guyomard P; Volkamer A; Gerwick WH; Kim HU; Müller R; van Wezel GP; van Westen GJP; Hirsch AKH; Linington RG; Robinson SL; Medema MH Nat Rev Drug Discov; 2023 Nov; 22(11):895-916. PubMed ID: 37697042 [TBL] [Abstract][Full Text] [Related]
18. Implications of Artificial Intelligence in Addressing Antimicrobial Resistance: Innovations, Global Challenges, and Healthcare's Future. Branda F; Scarpa F Antibiotics (Basel); 2024 May; 13(6):. PubMed ID: 38927169 [TBL] [Abstract][Full Text] [Related]
19. The application of artificial intelligence to accelerate G protein-coupled receptor drug discovery. Nguyen ATN; Nguyen DTN; Koh HY; Toskov J; MacLean W; Xu A; Zhang D; Webb GI; May LT; Halls ML Br J Pharmacol; 2024 Jul; 181(14):2371-2384. PubMed ID: 37161878 [TBL] [Abstract][Full Text] [Related]
20. Machine Learning and Artificial Intelligence: A Paradigm Shift in Big Data-Driven Drug Design and Discovery. Pasrija P; Jha P; Upadhyaya P; Khan MS; Chopra M Curr Top Med Chem; 2022; 22(20):1692-1727. PubMed ID: 35786336 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]