These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Occurrence of different trichothecenes and deoxynivalenol-3-β-D-glucoside in naturally and artificially contaminated Danish cereal grains and whole maize plants. Rasmussen PH; Nielsen KF; Ghorbani F; Spliid NH; Nielsen GC; Jørgensen LN Mycotoxin Res; 2012 Aug; 28(3):181-90. PubMed ID: 23606126 [TBL] [Abstract][Full Text] [Related]
3. A novel chemometric classification for FTIR spectra of mycotoxin-contaminated maize and peanuts at regulatory limits. Kos G; Sieger M; McMullin D; Zahradnik C; Sulyok M; Öner T; Mizaikoff B; Krska R Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016 Oct; 33(10):1596-1607. PubMed ID: 27684544 [TBL] [Abstract][Full Text] [Related]
4. Optimisation of a sample preparation procedure for the screening of fungal infection and assessment of deoxynivalenol content in maize using mid-infrared attenuated total reflection spectroscopy. Kos G; Lohninger H; Mizaikoff B; Krska R Food Addit Contam; 2007 Jul; 24(7):721-9. PubMed ID: 17613057 [TBL] [Abstract][Full Text] [Related]
5. Investigations on Fusarium spp. and their mycotoxins causing Fusarium ear rot of maize in Kosovo. Shala-Mayrhofer V; Varga E; Marjakaj R; Berthiller F; Musolli A; Berisha D; Kelmendi B; Lemmens M Food Addit Contam Part B Surveill; 2013; 6(4):237-43. PubMed ID: 24779930 [TBL] [Abstract][Full Text] [Related]
6. A comparative study of mid-infrared diffuse reflection (DR) and attenuated total reflection (ATR) spectroscopy for the detection of fungal infection on RWA2-corn. Kos G; Krska R; Lohninger H; Griffiths PR Anal Bioanal Chem; 2004 Jan; 378(1):159-66. PubMed ID: 14551669 [TBL] [Abstract][Full Text] [Related]
7. Restricted access supramolecular solvents for removal of matrix-induced ionization effects in mass spectrometry: Application to the determination of Fusarium toxins in cereals. García-Fonseca S; Rubio S Talanta; 2016 Feb; 148():370-9. PubMed ID: 26653462 [TBL] [Abstract][Full Text] [Related]
8. Development of a method for the determination of Fusarium fungi on corn using mid-infrared spectroscopy with attenuated total reflection and chemometrics. Kos G; Lohninger H; Krska R Anal Chem; 2003 Mar; 75(5):1211-7. PubMed ID: 12641243 [TBL] [Abstract][Full Text] [Related]
9. Prediction of Deoxynivalenol Contamination in Wheat via Infrared Attenuated Total Reflection Spectroscopy and Multivariate Data Analysis. Fomina P; Femenias A; Tafintseva V; Freitag S; Sulyok M; Aledda M; Kohler A; Krska R; Mizaikoff B ACS Food Sci Technol; 2024 Apr; 4(4):895-904. PubMed ID: 38660051 [TBL] [Abstract][Full Text] [Related]
10. Effects of temperature and soil fauna on the reduction and leaching of deoxynivalenol and zearalenone from Fusarium graminearum-infected maize stubbles. Meyer-Wolfarth F; Oldenburg E; Meiners T; Muñoz K; Schrader S Mycotoxin Res; 2021 Aug; 37(3):249-263. PubMed ID: 34173210 [TBL] [Abstract][Full Text] [Related]
11. Fusarium species complex and mycotoxins in grain maize from maize hybrid trials and from grower's fields. Dorn B; Forrer HR; Jenny E; Wettstein FE; Bucheli TD; Vogelgsang S J Appl Microbiol; 2011 Sep; 111(3):693-706. PubMed ID: 21714835 [TBL] [Abstract][Full Text] [Related]
12. Incidence of Fusarium species and mycotoxins in silage maize. Eckard S; Wettstein FE; Forrer HR; Vogelgsang S Toxins (Basel); 2011 Aug; 3(8):949-67. PubMed ID: 22069750 [TBL] [Abstract][Full Text] [Related]
13. Development and Validation of an LC-MS/MS Based Method for the Determination of Deoxynivalenol and Its Modified Forms in Maize. Fiby I; Sopel MM; Michlmayr H; Adam G; Berthiller F Toxins (Basel); 2021 Aug; 13(9):. PubMed ID: 34564604 [TBL] [Abstract][Full Text] [Related]
14. Fourier transform near-infrared and mid-infrared spectroscopy as efficient tools for rapid screening of deoxynivalenol contamination in wheat bran. De Girolamo A; Cervellieri S; Cortese M; Porricelli ACR; Pascale M; Longobardi F; von Holst C; Ciaccheri L; Lippolis V J Sci Food Agric; 2019 Mar; 99(4):1946-1953. PubMed ID: 30270446 [TBL] [Abstract][Full Text] [Related]
15. Occurrence of Birr T; Jensen T; Preußke N; Sönnichsen FD; De Boevre M; De Saeger S; Hasler M; Verreet JA; Klink H Toxins (Basel); 2021 Feb; 13(2):. PubMed ID: 33540691 [TBL] [Abstract][Full Text] [Related]
16. Quantitative analysis of Fusarium mycotoxins in maize using accelerated solvent extraction before liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry. Royer D; Humpf HU; Guy PA Food Addit Contam; 2004 Jul; 21(7):678-92. PubMed ID: 15370841 [TBL] [Abstract][Full Text] [Related]
17. Development and application of a method for the analysis of 9 mycotoxins in maize by HPLC-MS/MS. Wang Y; Xiao C; Guo J; Yuan Y; Wang J; Liu L; Yue T J Food Sci; 2013 Nov; 78(11):M1752-6. PubMed ID: 24245893 [TBL] [Abstract][Full Text] [Related]
18. Relationship between environmental factors, dry matter loss and mycotoxin levels in stored wheat and maize infected with Fusarium species. Mylona K; Sulyok M; Magan N Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(7):1118-28. PubMed ID: 22494580 [TBL] [Abstract][Full Text] [Related]
19. Deoxynivalenol and other selected Fusarium toxins in Swedish wheat--occurrence and correlation to specific Fusarium species. Lindblad M; Gidlund A; Sulyok M; Börjesson T; Krska R; Olsen M; Fredlund E Int J Food Microbiol; 2013 Oct; 167(2):284-91. PubMed ID: 23962919 [TBL] [Abstract][Full Text] [Related]
20. Mycological analysis and multimycotoxins in maize from rural subsistence farmers in the former Transkei, South Africa. Shephard GS; Burger HM; Gambacorta L; Krska R; Powers SP; Rheeder JP; Solfrizzo M; Sulyok M; Visconti A; Warth B; van der Westhuizen L J Agric Food Chem; 2013 Aug; 61(34):8232-40. PubMed ID: 23915226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]