BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 36448789)

  • 1. Identifying the Gene Regulatory Network of the Starvation-Induced Transcriptional Activator Nla28.
    Ma M; Garza AG; Lemon DJ; Caro EA; Ritchie L; Ryan C; Spearing VM; Murphy KA; Welch RD
    J Bacteriol; 2022 Dec; 204(12):e0026522. PubMed ID: 36448789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The enhancer binding protein Nla6 regulates developmental genes that are important for Myxococcus xanthus sporulation.
    Giglio KM; Zhu C; Klunder C; Kummer S; Garza AG
    J Bacteriol; 2015 Apr; 197(7):1276-87. PubMed ID: 25645554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The σ
    Ma M; Welch RD; Garza AG
    Sci Rep; 2021 Feb; 11(1):4771. PubMed ID: 33637792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Nla28S/Nla28 two-component signal transduction system regulates sporulation in Myxococcus xanthus.
    Sarwar Z; Garza AG
    J Bacteriol; 2012 Sep; 194(17):4698-708. PubMed ID: 22753068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global mutational analysis of NtrC-like activators in Myxococcus xanthus: identifying activator mutants defective for motility and fruiting body development.
    Caberoy NB; Welch RD; Jakobsen JS; Slater SC; Garza AG
    J Bacteriol; 2003 Oct; 185(20):6083-94. PubMed ID: 14526020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription factor MrpC binds to promoter regions of hundreds of developmentally-regulated genes in Myxococcus xanthus.
    Robinson M; Son B; Kroos D; Kroos L
    BMC Genomics; 2014 Dec; 15():1123. PubMed ID: 25515642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancer-binding proteins with a forkhead-associated domain and the sigma54 regulon in Myxococcus xanthus fruiting body development.
    Jelsbak L; Givskov M; Kaiser D
    Proc Natl Acad Sci U S A; 2005 Feb; 102(8):3010-5. PubMed ID: 15668379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic analysis of the Myxococcus xanthus FruA regulon, and comparative developmental transcriptomic analysis of two fruiting body forming species, Myxococcus xanthus and Myxococcus stipitatus.
    McLoon AL; Boeck ME; Bruckskotten M; Keyel AC; Søgaard-Andersen L
    BMC Genomics; 2021 Nov; 22(1):784. PubMed ID: 34724903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Minimal Threshold of c-di-GMP Is Essential for Fruiting Body Formation and Sporulation in Myxococcus xanthus.
    Skotnicka D; Smaldone GT; Petters T; Trampari E; Liang J; Kaever V; Malone JG; Singer M; Søgaard-Andersen L
    PLoS Genet; 2016 May; 12(5):e1006080. PubMed ID: 27214040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Signal-Responsive Gene Regulatory Network Governing Myxococcus Development.
    Kroos L
    Trends Genet; 2017 Jan; 33(1):3-15. PubMed ID: 27916428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Myxococcus xanthus Nla4 protein is important for expression of stringent response-associated genes, ppGpp accumulation, and fruiting body development.
    Ossa F; Diodati ME; Caberoy NB; Giglio KM; Edmonds M; Singer M; Garza AG
    J Bacteriol; 2007 Dec; 189(23):8474-83. PubMed ID: 17905995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-Component Signal Transduction Systems That Regulate the Temporal and Spatial Expression of Myxococcus xanthus Sporulation Genes.
    Sarwar Z; Garza AG
    J Bacteriol; 2016 Feb; 198(3):377-85. PubMed ID: 26369581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation.
    Müller FD; Treuner-Lange A; Heider J; Huntley SM; Higgs PI
    BMC Genomics; 2010 Apr; 11():264. PubMed ID: 20420673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasensitive Response of Developing Myxococcus xanthus to the Addition of Nutrient Medium Correlates with the Level of MrpC.
    Hoang Y; Kroos L
    J Bacteriol; 2018 Nov; 200(22):. PubMed ID: 30181127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cascade of coregulating enhancer binding proteins initiates and propagates a multicellular developmental program.
    Giglio KM; Caberoy N; Suen G; Kaiser D; Garza AG
    Proc Natl Acad Sci U S A; 2011 Aug; 108(32):E431-9. PubMed ID: 21670274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An early A-signal-dependent gene in Myxococcus xanthus has a sigma 54-like promoter.
    Keseler IM; Kaiser D
    J Bacteriol; 1995 Aug; 177(16):4638-44. PubMed ID: 7642489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HthA, a putative DNA-binding protein, and HthB are important for fruiting body morphogenesis in Myxococcus xanthus.
    Nielsen M; Rasmussen AA; Ellehauge E; Treuner-Lange A; Søgaard-Andersen L
    Microbiology (Reading); 2004 Jul; 150(Pt 7):2171-2183. PubMed ID: 15256560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of late-acting operons by three transcription factors and a CRISPR-Cas component during Myxococcus xanthus development.
    Saha S; Kroos L
    Mol Microbiol; 2024 May; 121(5):1002-1020. PubMed ID: 38525557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TodK, a putative histidine protein kinase, regulates timing of fruiting body morphogenesis in Myxococcus xanthus.
    Rasmussen AA; Søgaard-Andersen L
    J Bacteriol; 2003 Sep; 185(18):5452-64. PubMed ID: 12949097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nla18, a key regulatory protein required for normal growth and development of Myxococcus xanthus.
    Diodati ME; Ossa F; Caberoy NB; Jose IR; Hiraiwa W; Igo MM; Singer M; Garza AG
    J Bacteriol; 2006 Mar; 188(5):1733-43. PubMed ID: 16484184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.