These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 36448821)

  • 1. NREM-REM alternation complicates transitions from napping to non-napping behavior in a three-state model of sleep-wake regulation.
    Athanasouli C; Kalmbach K; Booth V; Diniz Behn CG
    Math Biosci; 2023 Jan; 355():108929. PubMed ID: 36448821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling interindividual differences in spontaneous internal desynchrony patterns.
    Gleit RD; Diniz Behn CG; Booth V
    J Biol Rhythms; 2013 Oct; 28(5):339-55. PubMed ID: 24132060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavioral sleep-wake homeostasis and EEG delta power are decoupled by chronic sleep restriction in the rat.
    Stephenson R; Caron AM; Famina S
    Sleep; 2015 May; 38(5):685-97. PubMed ID: 25669184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arousal state feedback as a potential physiological generator of the ultradian REM/NREM sleep cycle.
    Phillips AJ; Robinson PA; Klerman EB
    J Theor Biol; 2013 Feb; 319():75-87. PubMed ID: 23220346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topography of the sleep/wake states related EEG microstructure and transitions structure differentiates the functionally distinct cholinergic innervation disorders in rat.
    Petrovic J; Lazic K; Ciric J; Kalauzi A; Saponjic J
    Behav Brain Res; 2013 Nov; 256():108-18. PubMed ID: 23933142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-driven mathematical modeling of sleep consolidation in early childhood.
    Athanasouli C; Stowe SR; LeBourgeois MK; Booth V; Diniz Behn CG
    J Theor Biol; 2024 Jun; 593():111892. PubMed ID: 38945471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian rhythms and sleep have additive effects on respiration in the rat.
    Stephenson R; Liao KS; Hamrahi H; Horner RL
    J Physiol; 2001 Oct; 536(Pt 1):225-35. PubMed ID: 11579171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental Changes in Ultradian Sleep Cycles across Early Childhood.
    Lopp S; Navidi W; Achermann P; LeBourgeois M; Diniz Behn C
    J Biol Rhythms; 2017 Feb; 32(1):64-74. PubMed ID: 28088873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dysregulation of Sleep Behavioral States in Narcolepsy.
    Schoch SF; Werth E; Poryazova R; Scammell TE; Baumann CR; Imbach LL
    Sleep; 2017 Dec; 40(12):. PubMed ID: 29029348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sleep-wake patterns, non-rapid eye movement, and rapid eye movement sleep cycles in teenage narcolepsy.
    Xu X; Wu H; Zhuang J; Chen K; Huang B; Zhao Z; Zhao Z
    Sleep Med; 2017 May; 33():47-56. PubMed ID: 28449905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lesion of the pedunculopontine tegmental nucleus in rat augments cortical activation and disturbs sleep/wake state transitions structure.
    Petrovic J; Ciric J; Lazic K; Kalauzi A; Saponjic J
    Exp Neurol; 2013 Sep; 247():562-71. PubMed ID: 23481548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamatergic Neurons in the Preoptic Hypothalamus Promote Wakefulness, Destabilize NREM Sleep, Suppress REM Sleep, and Regulate Cortical Dynamics.
    Mondino A; Hambrecht-Wiedbusch VS; Li D; York AK; Pal D; González J; Torterolo P; Mashour GA; Vanini G
    J Neurosci; 2021 Apr; 41(15):3462-3478. PubMed ID: 33664133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical properties of sleep-wake behavior in the rat and their relation to circadian and ultradian phases.
    Stephenson R; Famina S; Caron AM; Lim J
    Sleep; 2013 Sep; 36(9):1377-90. PubMed ID: 23997372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Asymmetrical Hypothesis for the NREM-REM Sleep Alternation-What Is the NREM-REM Cycle?
    Le Bon O
    Front Neurosci; 2021; 15():627193. PubMed ID: 33897348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relevance of the metabotropic glutamate receptor (mGluR5) in the regulation of NREM-REM sleep cycle and homeostasis: evidence from mGluR5 (-/-) mice.
    Ahnaou A; Raeymaekers L; Steckler T; Drinkenbrug WH
    Behav Brain Res; 2015 Apr; 282():218-26. PubMed ID: 25591476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homeostatic regulation of NREM sleep, but not REM sleep, in Australian magpies.
    Johnsson RD; Connelly F; Vyssotski AL; Roth TC; Lesku JA
    Sleep; 2022 Feb; 45(2):. PubMed ID: 34432054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RGS Proteins and Gαi2 Modulate Sleep, Wakefulness, and Disruption of Sleep/ Wake States after Isoflurane and Sevoflurane Anesthesia.
    Zhang H; Wheat H; Wang P; Jiang S; Baghdoyan HA; Neubig RR; Shi XY; Lydic R
    Sleep; 2016 Feb; 39(2):393-404. PubMed ID: 26564126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulating microinjection experiments in a novel model of the rat sleep-wake regulatory network.
    Diniz Behn CG; Booth V
    J Neurophysiol; 2010 Apr; 103(4):1937-53. PubMed ID: 20107121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Essential roles of GABA transporter-1 in controlling rapid eye movement sleep and in increased slow wave activity after sleep deprivation.
    Xu XH; Qu WM; Bian MJ; Huang F; Fei J; Urade Y; Huang ZL
    PLoS One; 2013; 8(10):e75823. PubMed ID: 24155871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid eye movement (REM) sleep homeostatic regulatory processes in the rat: changes in the sleep-wake stages and electroencephalographic power spectra.
    Shea JL; Mochizuki T; Sagvaag V; Aspevik T; Bjorkum AA; Datta S
    Brain Res; 2008 Jun; 1213():48-56. PubMed ID: 18455709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.