These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36449584)

  • 1. Characterization of Ultrasound Surgical Devices.
    Schafer ME
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Feb; 70(2):147-163. PubMed ID: 36449584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring derived acoustic power of an ultrasound surgical device in the linear and nonlinear operating modes.
    Petosić A; Ivancević B; Svilar D
    Ultrasonics; 2009 Jun; 49(6-7):522-31. PubMed ID: 19217636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a reference ultrasonic cavitation vessel: Part 2--investigating the spatial variation and acoustic pressure threshold of inertial cavitation in a 25 kHz ultrasound field.
    Hodnett M; Zeqiri B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1809-22. PubMed ID: 18986923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of inertial acoustic cavitation in pulsed sonication using a real-time feedback loop system.
    Desjouy C; Poizat A; Gilles B; Inserra C; Bera JC
    J Acoust Soc Am; 2013 Aug; 134(2):1640-6. PubMed ID: 23927204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy.
    Zhong P; Cioanta I; Cocks FH; Preminger GM
    J Acoust Soc Am; 1997 May; 101(5 Pt 1):2940-50. PubMed ID: 9165740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser-nucleated acoustic cavitation in focused ultrasound.
    Gerold B; Kotopoulis S; McDougall C; McGloin D; Postema M; Prentice P
    Rev Sci Instrum; 2011 Apr; 82(4):044902. PubMed ID: 21529030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the acoustic output of a harmonic scalpel.
    Koch C; Borys M; Fedtke T; Richter U; Pöhl B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Nov; 49(11):1522-9. PubMed ID: 12484475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and theoretical characterisation of sonochemical cells. Part 2: cell disruptors (Ultrasonic horns) and cavity cluster collapse.
    Birkin PR; Offin DG; Leighton TG
    Phys Chem Chem Phys; 2005 Feb; 7(3):530-7. PubMed ID: 19785140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges and regulatory considerations in the acoustic measurement of high-frequency (>20 MHz) ultrasound.
    Nagle SM; Sundar G; Schafer ME; Harris GR; Vaezy S; Gessert JM; Howard SM; Moore MK; Eaton RM;
    J Ultrasound Med; 2013 Nov; 32(11):1897-911. PubMed ID: 24154893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feedback loop process to control acoustic cavitation.
    Sabraoui A; Inserra C; Gilles B; Béra JC; Mestas JL
    Ultrason Sonochem; 2011 Mar; 18(2):589-94. PubMed ID: 20843725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of pulse duration and pulse repetition frequency of cavitation histotripsy on erosion at the surface of soft material.
    Zhou Y; Wang X
    Ultrasonics; 2018 Mar; 84():296-309. PubMed ID: 29182946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glass-windowed ultrasound transducers.
    Yddal T; Gilja OH; Cochran S; Postema M; Kotopoulis S
    Ultrasonics; 2016 May; 68():108-19. PubMed ID: 26938326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Acoustic Reflection on the Inertial Cavitation Dose in a Franz Diffusion Cell.
    Robertson J; Becker S
    Ultrasound Med Biol; 2018 May; 44(5):1100-1109. PubMed ID: 29525456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic field characterization of a clinical magnetic resonance-guided high-intensity focused ultrasound system inside the magnet bore.
    Kothapalli SVVN; Altman MB; Partanen A; Wan L; Gach HM; Straube W; Hallahan DE; Chen H
    Med Phys; 2017 Sep; 44(9):4890-4899. PubMed ID: 28626862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation and measurement of nonlinear behavior in a high-power test cell.
    Harvey G; Gachagan A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Apr; 58(4):808-19. PubMed ID: 21507758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber optic probe hydrophone for the study of acoustic cavitation in water.
    Arvengas A; Davitt K; Caupin F
    Rev Sci Instrum; 2011 Mar; 82(3):034904. PubMed ID: 21456781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields.
    Sapozhnikov OA; Tsysar SA; Khokhlova VA; Kreider W
    J Acoust Soc Am; 2015 Sep; 138(3):1515-32. PubMed ID: 26428789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of the AIUM/NEMA, IEC and FDA (1980) definitions of various acoustic output parameters for ultrasonic transducers.
    Livett AJ; Preston RC
    Ultrasound Med Biol; 1985; 11(6):793-802. PubMed ID: 4095794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shock formation and nonlinear saturation effects in the ultrasound field of a diagnostic curvilinear probe.
    Karzova MM; Yuldashev PV; Sapozhnikov OA; Khokhlova VA; Cunitz BW; Kreider W; Bailey MR
    J Acoust Soc Am; 2017 Apr; 141(4):2327. PubMed ID: 28464662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sonoporation of adherent cells under regulated ultrasound cavitation conditions.
    Muleki Seya P; Fouqueray M; Ngo J; Poizat A; Inserra C; Béra JC
    Ultrasound Med Biol; 2015 Apr; 41(4):1008-19. PubMed ID: 25701522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.