These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 36450094)
1. Molecular Factors of Ice Growth Inhibition for Hyperactive and Globular Antifreeze Proteins: Insights from Molecular Dynamics Simulation. Pal P; Aich R; Chakraborty S; Jana B Langmuir; 2022 Dec; 38(49):15132-15144. PubMed ID: 36450094 [TBL] [Abstract][Full Text] [Related]
2. Deciphering the Role of the Non-ice-binding Surface in the Antifreeze Activity of Hyperactive Antifreeze Proteins. Pal P; Chakraborty S; Jana B J Phys Chem B; 2020 Jun; 124(23):4686-4696. PubMed ID: 32425044 [TBL] [Abstract][Full Text] [Related]
3. The low-entropy hydration shell mediated ice-binding mechanism of antifreeze proteins. Guo S; Yang L; Hou C; Jiang S; Ma X; Shi L; Zheng B; Ye L; He X Int J Biol Macromol; 2024 Oct; 277(Pt 4):134562. PubMed ID: 39116982 [TBL] [Abstract][Full Text] [Related]
4. Optimum Number of Anchored Clathrate Water and Its Instantaneous Fluctuations Dictate Ice Plane Recognition Specificities of Insect Antifreeze Protein. Chakraborty S; Jana B J Phys Chem B; 2018 Mar; 122(12):3056-3067. PubMed ID: 29510055 [TBL] [Abstract][Full Text] [Related]
5. High Water Density at Non-Ice-Binding Surfaces Contributes to the Hyperactivity of Antifreeze Proteins. Biswas AD; Barone V; Daidone I J Phys Chem Lett; 2021 Sep; 12(36):8777-8783. PubMed ID: 34491750 [TBL] [Abstract][Full Text] [Related]
6. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations. Sun T; Gauthier SY; Campbell RL; Davies PL J Phys Chem B; 2015 Oct; 119(40):12808-15. PubMed ID: 26371748 [TBL] [Abstract][Full Text] [Related]
7. Molecular structure of a hyperactive antifreeze protein adsorbed to ice. Meister K; Moll CJ; Chakraborty S; Jana B; DeVries AL; Ramløv H; Bakker HJ J Chem Phys; 2019 Apr; 150(13):131101. PubMed ID: 30954062 [TBL] [Abstract][Full Text] [Related]
8. Ordered hydration layer mediated ice adsorption of a globular antifreeze protein: mechanistic insight. Chakraborty S; Jana B Phys Chem Chem Phys; 2019 Sep; 21(35):19298-19310. PubMed ID: 31451813 [TBL] [Abstract][Full Text] [Related]
9. Hydration Shell of Antifreeze Proteins: Unveiling the Role of Non-Ice-Binding Surfaces. Zanetti-Polzi L; Biswas AD; Del Galdo S; Barone V; Daidone I J Phys Chem B; 2019 Aug; 123(30):6474-6480. PubMed ID: 31280567 [TBL] [Abstract][Full Text] [Related]
10. Molecular Insight into the Adsorption of Spruce Budworm Antifreeze Protein to an Ice Surface: A Clathrate-Mediated Recognition Mechanism. Chakraborty S; Jana B Langmuir; 2017 Jul; 33(28):7202-7214. PubMed ID: 28650167 [TBL] [Abstract][Full Text] [Related]
11. Preordering of water is not needed for ice recognition by hyperactive antifreeze proteins. Hudait A; Moberg DR; Qiu Y; Odendahl N; Paesani F; Molinero V Proc Natl Acad Sci U S A; 2018 Aug; 115(33):8266-8271. PubMed ID: 29987018 [TBL] [Abstract][Full Text] [Related]
12. Computational Study of Differences between Antifreeze Activity of Type-III Antifreeze Protein from Ocean Pout and Its Mutant. Kumari S; Muthachikavil AV; Tiwari JK; Punnathanam SN Langmuir; 2020 Mar; 36(9):2439-2448. PubMed ID: 32069407 [TBL] [Abstract][Full Text] [Related]
13. Influence of antifreeze proteins on the ice/water interface. Todde G; Hovmöller S; Laaksonen A J Phys Chem B; 2015 Feb; 119(8):3407-13. PubMed ID: 25611783 [TBL] [Abstract][Full Text] [Related]
14. When are antifreeze proteins in solution essential for ice growth inhibition? Drori R; Davies PL; Braslavsky I Langmuir; 2015 Jun; 31(21):5805-11. PubMed ID: 25946514 [TBL] [Abstract][Full Text] [Related]
15. Elucidating the Sluggish Water Dynamics at the Ice-Binding Surface of the Hyperactive Midya US; Bandyopadhyay S J Phys Chem B; 2023 Jan; 127(1):121-132. PubMed ID: 36594578 [TBL] [Abstract][Full Text] [Related]
16. Ice-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics. Drori R; Celik Y; Davies PL; Braslavsky I J R Soc Interface; 2014 Sep; 11(98):20140526. PubMed ID: 25008081 [TBL] [Abstract][Full Text] [Related]
17. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences. Hanada Y; Nishimiya Y; Miura A; Tsuda S; Kondo H FEBS J; 2014 Aug; 281(16):3576-90. PubMed ID: 24938370 [TBL] [Abstract][Full Text] [Related]
18. Role of Polar and Nonpolar Groups in the Activity of Antifreeze Proteins: A Molecular Dynamics Simulation Study. Midya US; Bandyopadhyay S J Phys Chem B; 2018 Oct; 122(40):9389-9398. PubMed ID: 30222341 [TBL] [Abstract][Full Text] [Related]
19. Will It Be Beneficial To Simulate the Antifreeze Proteins at Ice Freezing Condition or at Lower Temperature? Kar RK; Bhunia A J Phys Chem B; 2015 Sep; 119(35):11485-95. PubMed ID: 26287639 [TBL] [Abstract][Full Text] [Related]
20. Characterization of microbial antifreeze protein with intermediate activity suggests that a bound-water network is essential for hyperactivity. Khan NMU; Arai T; Tsuda S; Kondo H Sci Rep; 2021 Mar; 11(1):5971. PubMed ID: 33727595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]