BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 36450451)

  • 21. Ahr1 and Tup1 Contribute to the Transcriptional Control of Virulence-Associated Genes in Candida albicans.
    Ruben S; Garbe E; Mogavero S; Albrecht-Eckardt D; Hellwig D; Häder A; Krüger T; Gerth K; Jacobsen ID; Elshafee O; Brunke S; Hünniger K; Kniemeyer O; Brakhage AA; Morschhäuser J; Hube B; Vylkova S; Kurzai O; Martin R
    mBio; 2020 Apr; 11(2):. PubMed ID: 32345638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals.
    Eddouzi J; Parker JE; Vale-Silva LA; Coste A; Ischer F; Kelly S; Manai M; Sanglard D
    Antimicrob Agents Chemother; 2013 Jul; 57(7):3182-93. PubMed ID: 23629718
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Fungal Transcription Regulator of Vacuolar Function Modulates Candida albicans Interactions with Host Epithelial Cells.
    Reuter-Weissenberger P; Meir J; Pérez JC
    mBio; 2021 Dec; 12(6):e0302021. PubMed ID: 34781731
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Emerging Mechanisms of Drug Resistance in Candida albicans.
    Prasad R; Nair R; Banerjee A
    Prog Mol Subcell Biol; 2019; 58():135-153. PubMed ID: 30911892
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Introduction of Large Sequence Inserts by CRISPR-Cas9 To Create Pathogenicity Mutants in the Multinucleate Filamentous Pathogen Sclerotinia sclerotiorum.
    Li J; Zhang Y; Zhang Y; Yu PL; Pan H; Rollins JA
    mBio; 2018 Jun; 9(3):. PubMed ID: 29946044
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Azole Resistance Reduces Susceptibility to the Tetrazole Antifungal VT-1161.
    Monk BC; Keniya MV; Sabherwal M; Wilson RK; Graham DO; Hassan HF; Chen D; Tyndall JDA
    Antimicrob Agents Chemother; 2019 Jan; 63(1):. PubMed ID: 30397057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid detection of ERG11 gene mutations in clinical Candida albicans isolates with reduced susceptibility to fluconazole by rolling circle amplification and DNA sequencing.
    Wang H; Kong F; Sorrell TC; Wang B; McNicholas P; Pantarat N; Ellis D; Xiao M; Widmer F; Chen SC
    BMC Microbiol; 2009 Aug; 9():167. PubMed ID: 19682357
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptional regulation of MDR1, encoding a drug efflux determinant, in fluconazole-resistant Candida albicans strains through an Mcm1p binding site.
    Riggle PJ; Kumamoto CA
    Eukaryot Cell; 2006 Dec; 5(12):1957-68. PubMed ID: 17041190
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contribution of Clinically Derived Mutations in the Gene Encoding the Zinc Cluster Transcription Factor Mrr2 to Fluconazole Antifungal Resistance and
    Nishimoto AT; Zhang Q; Hazlett B; Morschhäuser J; Rogers PD
    Antimicrob Agents Chemother; 2019 May; 63(5):. PubMed ID: 30833425
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An A643T mutation in the transcription factor Upc2p causes constitutive ERG11 upregulation and increased fluconazole resistance in Candida albicans.
    Heilmann CJ; Schneider S; Barker KS; Rogers PD; Morschhäuser J
    Antimicrob Agents Chemother; 2010 Jan; 54(1):353-9. PubMed ID: 19884367
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Candida albicans Swi/Snf and Mediator Complexes Differentially Regulate Mrr1-Induced
    Liu Z; Myers LC
    Antimicrob Agents Chemother; 2017 Nov; 61(11):. PubMed ID: 28807921
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increased expression and hotspot mutations of the multidrug efflux transporter, CDR1 in azole-resistant Candida albicans isolates from vaginitis patients.
    Looi CY; D' Silva EC; Seow HF; Rosli R; Ng KP; Chong PP
    FEMS Microbiol Lett; 2005 Aug; 249(2):283-9. PubMed ID: 16006060
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptional activation and increased mRNA stability contribute to overexpression of CDR1 in azole-resistant Candida albicans.
    Manoharlal R; Gaur NA; Panwar SL; Morschhäuser J; Prasad R
    Antimicrob Agents Chemother; 2008 Apr; 52(4):1481-92. PubMed ID: 18268086
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular genetic techniques for gene manipulation in Candida albicans.
    Xu QR; Yan L; Lv QZ; Zhou M; Sui X; Cao YB; Jiang YY
    Virulence; 2014 May; 5(4):507-20. PubMed ID: 24759671
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lrg1 Regulates β (1,3)-Glucan Masking in Candida albicans through the Cek1 MAP Kinase Pathway.
    Chen T; Wagner AS; Tams RN; Eyer JE; Kauffman SJ; Gann ER; Fernandez EJ; Reynolds TB
    mBio; 2019 Sep; 10(5):. PubMed ID: 31530671
    [No Abstract]   [Full Text] [Related]  

  • 36. Rapid Gene Concatenation for Genetic Rescue of Multigene Mutants in
    Huang MY; Woolford CA; Mitchell AP
    mSphere; 2018 Apr; 3(2):. PubMed ID: 29695626
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of sterol metabolism in Candida albicans by the UPC2 gene.
    White TC; Silver PM
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1215-8. PubMed ID: 16246084
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ncb2 is involved in activated transcription of CDR1 in azole-resistant clinical isolates of Candida albicans.
    Shukla S; Yadav V; Mukhopadhyay G; Prasad R
    Eukaryot Cell; 2011 Oct; 10(10):1357-66. PubMed ID: 21856931
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutations and/or Overexpressions of ERG4 and ERG11 Genes in Clinical Azoles-Resistant Isolates of Candida albicans.
    Feng W; Yang J; Xi Z; Qiao Z; Lv Y; Wang Y; Ma Y; Wang Y; Cen W
    Microb Drug Resist; 2017 Jul; 23(5):563-570. PubMed ID: 27976986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Investigation of mutations in transcription factors of efflux pump genes in fluconazole-resistant Candida albicans strains overexpressing the efflux pumps].
    Kalkandelen KT; Doluca Dereli M
    Mikrobiyol Bul; 2015 Oct; 49(4):609-18. PubMed ID: 26649419
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.