These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36450775)

  • 1. Prediction of antifreeze proteins using machine learning.
    Khan A; Uddin J; Ali F; Ahmad A; Alghushairy O; Banjar A; Daud A
    Sci Rep; 2022 Nov; 12(1):20672. PubMed ID: 36450775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AFP-SPTS: An Accurate Prediction of Antifreeze Proteins Using Sequential and Pseudo-Tri-Slicing Evolutionary Features with an Extremely Randomized Tree.
    Khan A; Uddin J; Ali F; Kumar H; Alghamdi W; Ahmad A
    J Chem Inf Model; 2023 Feb; 63(3):826-834. PubMed ID: 36649569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AFP-CMBPred: Computational identification of antifreeze proteins by extending consensus sequences into multi-blocks evolutionary information.
    Ali F; Akbar S; Ghulam A; Maher ZA; Unar A; Talpur DB
    Comput Biol Med; 2021 Dec; 139():105006. PubMed ID: 34749096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TargetFreeze: Identifying Antifreeze Proteins via a Combination of Weights using Sequence Evolutionary Information and Pseudo Amino Acid Composition.
    He X; Han K; Hu J; Yan H; Yang JY; Shen HB; Yu DJ
    J Membr Biol; 2015 Dec; 248(6):1005-14. PubMed ID: 26058944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target-DBPPred: An intelligent model for prediction of DNA-binding proteins using discrete wavelet transform based compression and light eXtreme gradient boosting.
    Ali F; Kumar H; Patil S; Kotecha K; Banjar A; Daud A
    Comput Biol Med; 2022 Jun; 145():105533. PubMed ID: 35447463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Effective Antifreeze Protein Predictor with Ensemble Classifiers and Comprehensive Sequence Descriptors.
    Yang R; Zhang C; Gao R; Zhang L
    Int J Mol Sci; 2015 Sep; 16(9):21191-214. PubMed ID: 26370959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RAFP-Pred: Robust Prediction of Antifreeze Proteins Using Localized Analysis of n-Peptide Compositions.
    Khan S; Naseem I; Togneri R; Bennamoun M
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(1):244-250. PubMed ID: 28113406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AFP-LSE: Antifreeze Proteins Prediction Using Latent Space Encoding of Composition of k-Spaced Amino Acid Pairs.
    Usman M; Khan S; Lee JA
    Sci Rep; 2020 Apr; 10(1):7197. PubMed ID: 32345989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iAFP-Ense: An Ensemble Classifier for Identifying Antifreeze Protein by Incorporating Grey Model and PSSM into PseAAC.
    Xiao X; Hui M; Liu Z
    J Membr Biol; 2016 Dec; 249(6):845-854. PubMed ID: 27812737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VotePLMs-AFP: Identification of antifreeze proteins using transformer-embedding features and ensemble learning.
    Qi D; Liu T
    Biochim Biophys Acta Gen Subj; 2024 Dec; 1868(12):130721. PubMed ID: 39426757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using support vector machine and evolutionary profiles to predict antifreeze protein sequences.
    Zhao X; Ma Z; Yin M
    Int J Mol Sci; 2012; 13(2):2196-2207. PubMed ID: 22408447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AFP-Pred: A random forest approach for predicting antifreeze proteins from sequence-derived properties.
    Kandaswamy KK; Chou KC; Martinetz T; Möller S; Suganthan PN; Sridharan S; Pugalenthi G
    J Theor Biol; 2011 Feb; 270(1):56-62. PubMed ID: 21056045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting antifreeze proteins with weighted generalized dipeptide composition and multi-regression feature selection ensemble.
    Wang S; Deng L; Xia X; Cao Z; Fei Y
    BMC Bioinformatics; 2021 Jun; 22(Suppl 3):340. PubMed ID: 34162327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity.
    Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL
    Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DP-BINDER: machine learning model for prediction of DNA-binding proteins by fusing evolutionary and physicochemical information.
    Ali F; Ahmed S; Swati ZNK; Akbar S
    J Comput Aided Mol Des; 2019 Jul; 33(7):645-658. PubMed ID: 31123959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyproline type II helical antifreeze proteins are widespread in Collembola and likely originated over 400 million years ago in the Ordovician Period.
    Scholl CL; Holmstrup M; Graham LA; Davies PL
    Sci Rep; 2023 Jun; 13(1):8880. PubMed ID: 37264058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chou's pseudo amino acid composition improves sequence-based antifreeze protein prediction.
    Mondal S; Pai PP
    J Theor Biol; 2014 Sep; 356():30-5. PubMed ID: 24732262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antifreeze Proteins and Their Practical Utilization in Industry, Medicine, and Agriculture.
    Eskandari A; Leow TC; Rahman MBA; Oslan SN
    Biomolecules; 2020 Dec; 10(12):. PubMed ID: 33317024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning-based model for accurate identification of druggable proteins using light extreme gradient boosting.
    Alghushairy O; Ali F; Alghamdi W; Khalid M; Alsini R; Asiry O
    J Biomol Struct Dyn; 2024; 42(22):12330-12341. PubMed ID: 37850427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. XGB-DrugPred: computational prediction of druggable proteins using eXtreme gradient boosting and optimized features set.
    Sikander R; Ghulam A; Ali F
    Sci Rep; 2022 Apr; 12(1):5505. PubMed ID: 35365726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.