These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 36450806)

  • 21. Metabolism of bile salts in mice influences spore germination in Clostridium difficile.
    Giel JL; Sorg JA; Sonenshein AL; Zhu J
    PLoS One; 2010 Jan; 5(1):e8740. PubMed ID: 20090901
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid.
    Sorg JA; Sonenshein AL
    J Bacteriol; 2010 Oct; 192(19):4983-90. PubMed ID: 20675492
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decreased secondary faecal bile acids in children with ulcerative colitis and Clostridioides difficile infection.
    Rotondo-Trivette S; Wang B; Gayer C; Parsana R; Luan Y; Sun F; Michail S
    Aliment Pharmacol Ther; 2021 Sep; 54(6):792-804. PubMed ID: 34218431
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clostridium septicum manifests a bile salt germinant response mediated by Clostridioides difficile csp gene orthologs.
    Sum R; Lim SJM; Sundaresan A; Samanta S; Swaminathan M; Low W; Ayyappan M; Lim TW; Choo MD; Huang GJ; Cheong I
    Commun Biol; 2024 Aug; 7(1):947. PubMed ID: 39103440
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The microbial-derived bile acid lithocholate and its epimers inhibit
    Kisthardt SC; Thanissery R; Pike CM; Foley MH; Theriot CM
    J Bacteriol; 2023 Sep; 205(9):e0018023. PubMed ID: 37695856
    [No Abstract]   [Full Text] [Related]  

  • 26. Efficiency of various bile salt preparations for stimulation of Clostridium difficile spore germination.
    Wilson KH
    J Clin Microbiol; 1983 Oct; 18(4):1017-9. PubMed ID: 6630458
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fate of ingested Clostridium difficile spores in mice.
    Howerton A; Patra M; Abel-Santos E
    PLoS One; 2013; 8(8):e72620. PubMed ID: 24023628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering probiotics to inhibit Clostridioides difficile infection by dynamic regulation of intestinal metabolism.
    Koh E; Hwang IY; Lee HL; De Sotto R; Lee JWJ; Lee YS; March JC; Chang MW
    Nat Commun; 2022 Jul; 13(1):3834. PubMed ID: 35787625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The cell wall lipoprotein CD1687 acts as a DNA binding protein during deoxycholate-induced biofilm formation in Clostridioides difficile.
    Auria E; Hunault L; England P; Monot M; Pipoli Da Fonseca J; Matondo M; Duchateau M; Tremblay YDN; Dupuy B
    NPJ Biofilms Microbiomes; 2023 May; 9(1):24. PubMed ID: 37169797
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hierarchical recognition of amino acid co-germinants during Clostridioides difficile spore germination.
    Shrestha R; Sorg JA
    Anaerobe; 2018 Feb; 49():41-47. PubMed ID: 29221987
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrostatic Interactions Dictate Bile Salt Hydrolase Substrate Preference.
    Malarney KP; Chang PV
    Biochemistry; 2023 Nov; 62(21):3076-3084. PubMed ID: 37883888
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A strain of Bacteroides thetaiotaomicron attenuates colonization of Clostridioides difficile and affects intestinal microbiota and bile acids profile in a mouse model.
    Li X; Kang Y; Huang Y; Xiao Y; Song L; Lu S; Ren Z
    Biomed Pharmacother; 2021 May; 137():111290. PubMed ID: 33508620
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic adaption to extracellular pyruvate triggers biofilm formation in Clostridioides difficile.
    Tremblay YDN; Durand BAR; Hamiot A; Martin-Verstraete I; Oberkampf M; Monot M; Dupuy B
    ISME J; 2021 Dec; 15(12):3623-3635. PubMed ID: 34155333
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Progesterone analogs influence germination of Clostridium sordellii and Clostridium difficile spores in vitro.
    Liggins M; Ramirez N; Magnuson N; Abel-Santos E
    J Bacteriol; 2011 Jun; 193(11):2776-83. PubMed ID: 21478359
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Imaging Clostridioides difficile Spore Germination and Germination Proteins.
    Baloh M; Nerber HN; Sorg JA
    J Bacteriol; 2022 Jul; 204(7):e0021022. PubMed ID: 35762766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Revised Understanding of Clostridioides difficile Spore Germination.
    Lawler AJ; Lambert PA; Worthington T
    Trends Microbiol; 2020 Sep; 28(9):744-752. PubMed ID: 32781028
    [TBL] [Abstract][Full Text] [Related]  

  • 37. BSH-TRAP: Bile salt hydrolase tagging and retrieval with activity-based probes.
    Parasar B; Chang PV
    Methods Enzymol; 2022; 664():85-102. PubMed ID: 35331380
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytotoxicity of bile salts against biliary epithelium: a study in isolated bile ductule fragments and isolated perfused rat liver.
    Benedetti A; Alvaro D; Bassotti C; Gigliozzi A; Ferretti G; La Rosa T; Di Sario A; Baiocchi L; Jezequel AM
    Hepatology; 1997 Jul; 26(1):9-21. PubMed ID: 9214446
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    Huang X; Johnson AE; Auchtung TA; McCullough HC; Lerma AI; Haidacher SJ; Hoch KM; Horvath TD; Haag AM; Auchtung JM
    bioRxiv; 2024 Jul; ():. PubMed ID: 39071387
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bile salt hydrolase-mediated inhibitory effect of Bacteroides ovatus on growth of Clostridium difficile.
    Yoon S; Yu J; McDowell A; Kim SH; You HJ; Ko G
    J Microbiol; 2017 Nov; 55(11):892-899. PubMed ID: 29076071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.