BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 36450822)

  • 21. MAG-Res2Net: a novel deep learning network for human activity recognition.
    Liu H; Zhao B; Dai C; Sun B; Li A; Wang Z
    Physiol Meas; 2023 Nov; 44(11):. PubMed ID: 37939391
    [No Abstract]   [Full Text] [Related]  

  • 22. Cross-Attention Enhanced Pyramid Multi-Scale Networks for Sensor-Based Human Activity Recognition.
    Pang H; Zheng L; Fang H
    IEEE J Biomed Health Inform; 2024 May; 28(5):2733-2744. PubMed ID: 38483804
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human Activity Recognition Based on Residual Network and BiLSTM.
    Li Y; Wang L
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062604
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using a Hybrid Neural Network and a Regularized Extreme Learning Machine for Human Activity Recognition with Smartphone and Smartwatch.
    Tan TH; Shih JY; Liu SH; Alkhaleefah M; Chang YL; Gochoo M
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992065
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low-Cost and Device-Free Human Activity Recognition Based on Hierarchical Learning Model.
    Chen J; Huang X; Jiang H; Miao X
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33800704
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Feature Fusion of a Deep-Learning Algorithm into Wearable Sensor Devices for Human Activity Recognition.
    Yen CT; Liao JX; Huang YK
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960388
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human Activity Recognition Using Cascaded Dual Attention CNN and Bi-Directional GRU Framework.
    Ullah H; Munir A
    J Imaging; 2023 Jun; 9(7):. PubMed ID: 37504807
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep SE-BiLSTM with IFPOA Fine-Tuning for Human Activity Recognition Using Mobile and Wearable Sensors.
    Jameer S; Syed H
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177523
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developing a novel hybrid method based on dispersion entropy and adaptive boosting algorithm for human activity recognition.
    Diykh M; Abdulla S; Deo RC; Siuly S; Ali M
    Comput Methods Programs Biomed; 2023 Feb; 229():107305. PubMed ID: 36527814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human Activity Recognition via Hybrid Deep Learning Based Model.
    Khan IU; Afzal S; Lee JW
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009865
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Radar Human Activity Recognition with an Attention-Based Deep Learning Network.
    Huan S; Wu L; Zhang M; Wang Z; Yang C
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991896
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TCN-attention-HAR: human activity recognition based on attention mechanism time convolutional network.
    Wei X; Wang Z
    Sci Rep; 2024 Mar; 14(1):7414. PubMed ID: 38548859
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human Activity Recognition Based on Deep Learning and Micro-Doppler Radar Data.
    Tan TH; Tian JH; Sharma AK; Liu SH; Huang YF
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676149
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network.
    Steven Eyobu O; Han DS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200377
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Comparative Analysis of Hybrid Deep Learning Models for Human Activity Recognition.
    Abbaspour S; Fotouhi F; Sedaghatbaf A; Fotouhi H; Vahabi M; Linden M
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33036479
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep CNN-LSTM With Self-Attention Model for Human Activity Recognition Using Wearable Sensor.
    Khatun MA; Yousuf MA; Ahmed S; Uddin MZ; Alyami SA; Al-Ashhab S; Akhdar HF; Khan A; Azad A; Moni MA
    IEEE J Transl Eng Health Med; 2022; 10():2700316. PubMed ID: 35795873
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic gesture recognition based on 2D convolutional neural network and feature fusion.
    Yu J; Qin M; Zhou S
    Sci Rep; 2022 Mar; 12(1):4345. PubMed ID: 35288612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptive Attention Memory Graph Convolutional Networks for Skeleton-Based Action Recognition.
    Liu D; Xu H; Wang J; Lu Y; Kong J; Qi M
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695972
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stacked deep analytic model for human activity recognition on a UCI HAR database.
    Pang YH; Ping LY; Ling GF; Yin OS; How KW
    F1000Res; 2021; 10():1046. PubMed ID: 35360410
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human Activity Recognition Based on Symbolic Representation Algorithms for Inertial Sensors.
    Sousa Lima W; de Souza Bragança HL; Montero Quispe KG; Pereira Souto EJ
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30463336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.