BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 36451039)

  • 1. Experimental in vitro, ex vivo and in vivo models in prostate cancer research.
    Sailer V; von Amsberg G; Duensing S; Kirfel J; Lieb V; Metzger E; Offermann A; Pantel K; Schuele R; Taubert H; Wach S; Perner S; Werner S; Aigner A
    Nat Rev Urol; 2023 Mar; 20(3):158-178. PubMed ID: 36451039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MDM2 Inhibition Sensitizes Prostate Cancer Cells to Androgen Ablation and Radiotherapy in a p53-Dependent Manner.
    Feng FY; Zhang Y; Kothari V; Evans JR; Jackson WC; Chen W; Johnson SB; Luczak C; Wang S; Hamstra DA
    Neoplasia; 2016 Apr; 18(4):213-22. PubMed ID: 27108384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of three-dimensional telomere profiles of circulating tumor cells in patients with high-risk prostate cancer who are undergoing androgen deprivation and radiation therapies.
    Wark L; Klonisch T; Awe J; LeClerc C; Dyck B; Quon H; Mai S
    Urol Oncol; 2017 Mar; 35(3):112.e1-112.e11. PubMed ID: 27956006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell death under epithelial-mesenchymal transition control in prostate cancer therapeutic response.
    Begemann D; Anastos H; Kyprianou N
    Int J Urol; 2018 Apr; 25(4):318-326. PubMed ID: 29345000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PCSD1, a new patient-derived model of bone metastatic prostate cancer, is castrate-resistant in the bone-niche.
    Godebu E; Muldong M; Strasner A; Wu CN; Park SC; Woo JR; Ma W; Liss MA; Hirata T; Raheem O; Cacalano NA; Kulidjian AA; Jamieson CA
    J Transl Med; 2014 Oct; 12():275. PubMed ID: 25278011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacologic inhibition of Jak2-Stat5 signaling By Jak2 inhibitor AZD1480 potently suppresses growth of both primary and castrate-resistant prostate cancer.
    Gu L; Liao Z; Hoang DT; Dagvadorj A; Gupta S; Blackmon S; Ellsworth E; Talati P; Leiby B; Zinda M; Lallas CD; Trabulsi EJ; McCue P; Gomella L; Huszar D; Nevalainen MT
    Clin Cancer Res; 2013 Oct; 19(20):5658-74. PubMed ID: 23942095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macrophage-Derived Cholesterol Contributes to Therapeutic Resistance in Prostate Cancer.
    El-Kenawi A; Dominguez-Viqueira W; Liu M; Awasthi S; Abraham-Miranda J; Keske A; Steiner KK; Noel L; Serna AN; Dhillon J; Gillies RJ; Yu X; Koomen JM; Yamoah K; Gatenby RA; Ruffell B
    Cancer Res; 2021 Nov; 81(21):5477-5490. PubMed ID: 34301759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current experimental human tissue-derived models for prostate cancer research.
    Kato M; Sasaki T; Inoue T
    Int J Urol; 2021 Feb; 28(2):150-162. PubMed ID: 33247498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunomagnetic quantification of circulating tumor cells as a prognostic factor of androgen deprivation responsiveness in patients with hormone naive metastatic prostate cancer.
    Okegawa T; Nutahara K; Higashihara E
    J Urol; 2008 Oct; 180(4):1342-7. PubMed ID: 18707699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of exosomal miR-146a-5p from cancer-associated fibroblasts after androgen deprivation therapy contributes to prostate cancer metastasis.
    Zhang Y; Zhao J; Ding M; Su Y; Cui D; Jiang C; Zhao S; Jia G; Wang X; Ruan Y; Jing Y; Xia S; Han B
    J Exp Clin Cancer Res; 2020 Dec; 39(1):282. PubMed ID: 33317606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A glutaminase isoform switch drives therapeutic resistance and disease progression of prostate cancer.
    Xu L; Yin Y; Li Y; Chen X; Chang Y; Zhang H; Liu J; Beasley J; McCaw P; Zhang H; Young S; Groth J; Wang Q; Locasale JW; Gao X; Tang DG; Dong X; He Y; George D; Hu H; Huang J
    Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33753479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Androgen Deprivation Therapy Potentiates the Efficacy of Vascular Targeted Photodynamic Therapy of Prostate Cancer Xenografts.
    Kim K; Watson PA; Lebdai S; Jebiwott S; Somma AJ; La Rosa S; Mehta D; Murray KS; Lilja H; Ulmert D; Monette S; Scherz A; Coleman JA
    Clin Cancer Res; 2018 May; 24(10):2408-2416. PubMed ID: 29463549
    [No Abstract]   [Full Text] [Related]  

  • 13. Patient-derived Models of Abiraterone- and Enzalutamide-resistant Prostate Cancer Reveal Sensitivity to Ribosome-directed Therapy.
    Lawrence MG; Obinata D; Sandhu S; Selth LA; Wong SQ; Porter LH; Lister N; Pook D; Pezaro CJ; Goode DL; Rebello RJ; Clark AK; Papargiris M; Van Gramberg J; Hanson AR; Banks P; Wang H; Niranjan B; Keerthikumar S; Hedwards S; Huglo A; Yang R; Henzler C; Li Y; Lopez-Campos F; Castro E; Toivanen R; Azad A; Bolton D; Goad J; Grummet J; Harewood L; Kourambas J; Lawrentschuk N; Moon D; Murphy DG; Sengupta S; Snow R; Thorne H; Mitchell C; Pedersen J; Clouston D; Norden S; Ryan A; Dehm SM; Tilley WD; Pearson RB; Hannan RD; Frydenberg M; Furic L; Taylor RA; Risbridger GP
    Eur Urol; 2018 Nov; 74(5):562-572. PubMed ID: 30049486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential establishment of lung metastatic xenograft model of androgen receptor-positive and androgen-independent prostate cancer (C4-2B).
    Yamamichi F; Matsuoka T; Shigemura K; Kawabata M; Shirakawa T; Fujisawa M
    Urology; 2012 Oct; 80(4):951.e1-7. PubMed ID: 22920407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enrichment of putative prostate cancer stem cells after androgen deprivation: upregulation of pluripotency transactivators concurs with resistance to androgen deprivation in LNCaP cell lines.
    Seiler D; Zheng J; Liu G; Wang S; Yamashiro J; Reiter RE; Huang J; Zeng G
    Prostate; 2013 Sep; 73(13):1378-90. PubMed ID: 23728788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor Microenvironment-Derived NRG1 Promotes Antiandrogen Resistance in Prostate Cancer.
    Zhang Z; Karthaus WR; Lee YS; Gao VR; Wu C; Russo JW; Liu M; Mota JM; Abida W; Linton E; Lee E; Barnes SD; Chen HA; Mao N; Wongvipat J; Choi D; Chen X; Zhao H; Manova-Todorova K; de Stanchina E; Taplin ME; Balk SP; Rathkopf DE; Gopalan A; Carver BS; Mu P; Jiang X; Watson PA; Sawyers CL
    Cancer Cell; 2020 Aug; 38(2):279-296.e9. PubMed ID: 32679108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CWR22 xenograft as an ex vivo human tumor model for prostate cancer gene therapy.
    Cheng L; Sun J; Pretlow TG; Culp J; Yang NS
    J Natl Cancer Inst; 1996 May; 88(9):607-11. PubMed ID: 8609662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting IGF-IR with ganitumab inhibits tumorigenesis and increases durability of response to androgen-deprivation therapy in VCaP prostate cancer xenografts.
    Fahrenholtz CD; Beltran PJ; Burnstein KL
    Mol Cancer Ther; 2013 Apr; 12(4):394-404. PubMed ID: 23348048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preclinical Models of Prostate Cancer: Patient-Derived Xenografts, Organoids, and Other Explant Models.
    Risbridger GP; Toivanen R; Taylor RA
    Cold Spring Harb Perspect Med; 2018 Aug; 8(8):. PubMed ID: 29311126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesenchymal stem cells expressing therapeutic genes induce autochthonous prostate tumour regression.
    Abrate A; Buono R; Canu T; Esposito A; Del Maschio A; Lucianò R; Bettiga A; Colciago G; Guazzoni G; Benigni F; Hedlund P; Altaner C; Montorsi F; Cavarretta IT
    Eur J Cancer; 2014 Sep; 50(14):2478-88. PubMed ID: 25060826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.