These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 36451115)

  • 1. Scalable transcriptomics analysis with Dask: applications in data science and machine learning.
    Moreno M; Vilaça R; Ferreira PG
    BMC Bioinformatics; 2022 Nov; 23(1):514. PubMed ID: 36451115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. R.ROSETTA: an interpretable machine learning framework.
    Garbulowski M; Diamanti K; Smolińska K; Baltzer N; Stoll P; Bornelöv S; Øhrn A; Feuk L; Komorowski J
    BMC Bioinformatics; 2021 Mar; 22(1):110. PubMed ID: 33676405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycowork: A Python package for glycan data science and machine learning.
    Thomès L; Burkholz R; Bojar D
    Glycobiology; 2021 Nov; 31(10):1240-1244. PubMed ID: 34192308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning and related approaches in transcriptomics.
    Cheng Y; Xu SM; Santucci K; Lindner G; Janitz M
    Biochem Biophys Res Commun; 2024 Sep; 724():150225. PubMed ID: 38852503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast and interpretable genomic data analysis using multiple approximate kernel learning.
    Bektaş AB; Ak Ç; Gönen M
    Bioinformatics; 2022 Jun; 38(Suppl 1):i77-i83. PubMed ID: 35758810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MultiPLIER: A Transfer Learning Framework for Transcriptomics Reveals Systemic Features of Rare Disease.
    Taroni JN; Grayson PC; Hu Q; Eddy S; Kretzler M; Merkel PA; Greene CS
    Cell Syst; 2019 May; 8(5):380-394.e4. PubMed ID: 31121115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ePlatypus: an ecosystem for computational analysis of immunogenomics data.
    Cotet TS; Agrafiotis A; Kreiner V; Kuhn R; Shlesinger D; Manero-Carranza M; Khodaverdi K; Kladis E; Desideri Perea A; Maassen-Veeters D; Glänzer W; Massery S; Guerci L; Hong KL; Han J; Stiklioraitis K; D'Arcy VM; Dizerens R; Kilchenmann S; Stalder L; Nissen L; Vogelsanger B; Anzböck S; Laslo D; Bakker S; Kondorosy M; Venerito M; Sanz García A; Feller I; Oxenius A; Reddy ST; Yermanos A
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37682115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HelPredictor models single-cell transcriptome to predict human embryo lineage allocation.
    Liang P; Zheng L; Long C; Yang W; Yang L; Zuo Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34037706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Primer on Data Analytics in Functional Genomics: How to Move from Data to Insight?
    Grabowski P; Rappsilber J
    Trends Biochem Sci; 2019 Jan; 44(1):21-32. PubMed ID: 30522862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. sRNARFTarget: a fast machine-learning-based approach for transcriptome-wide sRNA target prediction.
    Naskulwar K; Peña-Castillo L
    RNA Biol; 2022; 19(1):44-54. PubMed ID: 34965197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Galaxy-ML: An accessible, reproducible, and scalable machine learning toolkit for biomedicine.
    Gu Q; Kumar A; Bray S; Creason A; Khanteymoori A; Jalili V; Grüning B; Goecks J
    PLoS Comput Biol; 2021 Jun; 17(6):e1009014. PubMed ID: 34061826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prop3D: A flexible, Python-based platform for machine learning with protein structural properties and biophysical data.
    Draizen EJ; Readey J; Mura C; Bourne PE
    BMC Bioinformatics; 2024 Jan; 25(1):11. PubMed ID: 38177985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. dsMTL: a computational framework for privacy-preserving, distributed multi-task machine learning.
    Cao H; Zhang Y; Baumbach J; Burton PR; Dwyer D; Koutsouleris N; Matschinske J; Marcon Y; Rajan S; Rieg T; Ryser-Welch P; Späth J; ; Herrmann C; Schwarz E
    Bioinformatics; 2022 Oct; 38(21):4919-4926. PubMed ID: 36073911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable Prediction of Acute Myeloid Leukemia Using High-Dimensional Machine Learning and Blood Transcriptomics.
    Warnat-Herresthal S; Perrakis K; Taschler B; Becker M; Baßler K; Beyer M; Günther P; Schulte-Schrepping J; Seep L; Klee K; Ulas T; Haferlach T; Mukherjee S; Schultze JL
    iScience; 2020 Jan; 23(1):100780. PubMed ID: 31918046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning meets omics: applications and perspectives.
    Li R; Li L; Xu Y; Yang J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34791021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Taking Data Science to Heart: Next Scale of Gene Regulation.
    Chapski DJ; Vondriska TM
    Curr Cardiol Rep; 2021 Mar; 23(5):46. PubMed ID: 33721129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using R and Bioconductor in Clinical Genomics and Transcriptomics.
    Sepulveda JL
    J Mol Diagn; 2020 Jan; 22(1):3-20. PubMed ID: 31605800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MAVEN: compound mechanism of action analysis and visualisation using transcriptomics and compound structure data in R/Shiny.
    Hosseini-Gerami L; Hernansaiz Ballesteros R; Liu A; Broughton H; Collier DA; Bender A
    BMC Bioinformatics; 2023 Sep; 24(1):344. PubMed ID: 37715141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaling tree-based automated machine learning to biomedical big data with a feature set selector.
    Le TT; Fu W; Moore JH
    Bioinformatics; 2020 Jan; 36(1):250-256. PubMed ID: 31165141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hands-on training about overfitting.
    Demšar J; Zupan B
    PLoS Comput Biol; 2021 Mar; 17(3):e1008671. PubMed ID: 33661899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.