BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36451277)

  • 1. Evaluating resources composing the PheMAP knowledge base to enhance high-throughput phenotyping.
    Wan NC; Yaqoob AA; Ong HH; Zhao J; Wei WQ
    J Am Med Inform Assoc; 2023 Feb; 30(3):456-465. PubMed ID: 36451277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PheMap: a multi-resource knowledge base for high-throughput phenotyping within electronic health records.
    Zheng NS; Feng Q; Kerchberger VE; Zhao J; Edwards TL; Cox NJ; Stein CM; Roden DM; Denny JC; Wei WQ
    J Am Med Inform Assoc; 2020 Nov; 27(11):1675-1687. PubMed ID: 32974638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Phenotyping of Chinese Electronic Health Records by Recognizing Linguistic Patterns of Phenotypic Narratives With a Sequence Motif Discovery Tool: Algorithm Development and Validation.
    Li S; Deng L; Zhang X; Chen L; Yang T; Qi Y; Jiang T
    J Med Internet Res; 2022 Jun; 24(6):e37213. PubMed ID: 35657661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PheKB: a catalog and workflow for creating electronic phenotype algorithms for transportability.
    Kirby JC; Speltz P; Rasmussen LV; Basford M; Gottesman O; Peissig PL; Pacheco JA; Tromp G; Pathak J; Carrell DS; Ellis SB; Lingren T; Thompson WK; Savova G; Haines J; Roden DM; Harris PA; Denny JC
    J Am Med Inform Assoc; 2016 Nov; 23(6):1046-1052. PubMed ID: 27026615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HPO2Vec+: Leveraging heterogeneous knowledge resources to enrich node embeddings for the Human Phenotype Ontology.
    Shen F; Peng S; Fan Y; Wen A; Liu S; Wang Y; Wang L; Liu H
    J Biomed Inform; 2019 Aug; 96():103246. PubMed ID: 31255713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feature extraction for phenotyping from semantic and knowledge resources.
    Ning W; Chan S; Beam A; Yu M; Geva A; Liao K; Mullen M; Mandl KD; Kohane I; Cai T; Yu S
    J Biomed Inform; 2019 Mar; 91():103122. PubMed ID: 30738949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput phenotyping with temporal sequences.
    Estiri H; Strasser ZH; Murphy SN
    J Am Med Inform Assoc; 2021 Mar; 28(4):772-781. PubMed ID: 33313899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ensembles of natural language processing systems for portable phenotyping solutions.
    Liu C; Ta CN; Rogers JR; Li Z; Lee J; Butler AM; Shang N; Kury FSP; Wang L; Shen F; Liu H; Ena L; Friedman C; Weng C
    J Biomed Inform; 2019 Dec; 100():103318. PubMed ID: 31655273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. sureLDA: A multidisease automated phenotyping method for the electronic health record.
    Ahuja Y; Zhou D; He Z; Sun J; Castro VM; Gainer V; Murphy SN; Hong C; Cai T
    J Am Med Inform Assoc; 2020 Aug; 27(8):1235-1243. PubMed ID: 32548637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic validation of bipolar disorder identified by automated phenotyping using electronic health records.
    Chen CY; Lee PH; Castro VM; Minnier J; Charney AW; Stahl EA; Ruderfer DM; Murphy SN; Gainer V; Cai T; Jones I; Pato CN; Pato MT; Landén M; Sklar P; Perlis RH; Smoller JW
    Transl Psychiatry; 2018 Apr; 8(1):86. PubMed ID: 29666432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Type 2 Diabetes Mellitus Phenotyping Framework Using Expert Knowledge and Machine Learning Approach.
    Kagawa R; Kawazoe Y; Ida Y; Shinohara E; Tanaka K; Imai T; Ohe K
    J Diabetes Sci Technol; 2017 Jul; 11(4):791-799. PubMed ID: 27932531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surrogate-assisted feature extraction for high-throughput phenotyping.
    Yu S; Chakrabortty A; Liao KP; Cai T; Ananthakrishnan AN; Gainer VS; Churchill SE; Szolovits P; Murphy SN; Kohane IS; Cai T
    J Am Med Inform Assoc; 2017 Apr; 24(e1):e143-e149. PubMed ID: 27632993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Centralized Interactive Phenomics Resource: an integrated online phenomics knowledgebase for health data users.
    Honerlaw J; Ho YL; Fontin F; Murray M; Galloway A; Heise D; Connatser K; Davies L; Gosian J; Maripuri M; Russo J; Sangar R; Tanukonda V; Zielinski E; Dubreuil M; Zimolzak AJ; Panickan VA; Cheng SC; Whitbourne SB; Gagnon DR; Cai T; Liao KP; Ramoni RB; Gaziano JM; Muralidhar S; Cho K
    J Am Med Inform Assoc; 2024 Apr; 31(5):1126-1134. PubMed ID: 38481028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large language models facilitate the generation of electronic health record phenotyping algorithms.
    Yan C; Ong HH; Grabowska ME; Krantz MS; Su WC; Dickson AL; Peterson JF; Feng Q; Roden DM; Stein CM; Kerchberger VE; Malin BA; Wei WQ
    J Am Med Inform Assoc; 2024 Apr; ():. PubMed ID: 38613820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large Language Models Facilitate the Generation of Electronic Health Record Phenotyping Algorithms.
    Yan C; Ong HH; Grabowska ME; Krantz MS; Su WC; Dickson AL; Peterson JF; Feng Q; Roden DM; Stein CM; Kerchberger VE; Malin BA; Wei WQ
    medRxiv; 2024 Feb; ():. PubMed ID: 38196578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applying active learning to high-throughput phenotyping algorithms for electronic health records data.
    Chen Y; Carroll RJ; Hinz ER; Shah A; Eyler AE; Denny JC; Xu H
    J Am Med Inform Assoc; 2013 Dec; 20(e2):e253-9. PubMed ID: 23851443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput multimodal automated phenotyping (MAP) with application to PheWAS.
    Liao KP; Sun J; Cai TA; Link N; Hong C; Huang J; Huffman JE; Gronsbell J; Zhang Y; Ho YL; Castro V; Gainer V; Murphy SN; O'Donnell CJ; Gaziano JM; Cho K; Szolovits P; Kohane IS; Yu S; Cai T
    J Am Med Inform Assoc; 2019 Nov; 26(11):1255-1262. PubMed ID: 31613361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating electronic health record data sources and algorithmic approaches to identify hypertensive individuals.
    Teixeira PL; Wei WQ; Cronin RM; Mo H; VanHouten JP; Carroll RJ; LaRose E; Bastarache LA; Rosenbloom ST; Edwards TL; Roden DM; Lasko TA; Dart RA; Nikolai AM; Peissig PL; Denny JC
    J Am Med Inform Assoc; 2017 Jan; 24(1):162-171. PubMed ID: 27497800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Under-specification as the source of ambiguity and vagueness in narrative phenotype algorithm definitions.
    Yu J; Pacheco JA; Ghosh AS; Luo Y; Weng C; Shang N; Benoit B; Carrell DS; Carroll RJ; Dikilitas O; Freimuth RR; Gainer VS; Hakonarson H; Hripcsak G; Kullo IJ; Mentch F; Murphy SN; Peissig PL; Ramirez AH; Walton N; Wei WQ; Rasmussen LV
    BMC Med Inform Decis Mak; 2022 Jan; 22(1):23. PubMed ID: 35090449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of an automated phenotyping algorithm for rheumatoid arthritis.
    Zheng HW; Ranganath VK; Perry LC; Chetrit DA; Criner KM; Pham AQ; Seto R; Vangala S; Elashoff DA; Bui AAT
    J Biomed Inform; 2022 Nov; 135():104214. PubMed ID: 36220544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.