These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 36451605)
41. Synergistic antibiofilm efficacy of various commercial antiseptics, enzymes and EDTA: a study of Pseudomonas aeruginosa and Staphylococcus aureus biofilms. Lefebvre E; Vighetto C; Di Martino P; Larreta Garde V; Seyer D Int J Antimicrob Agents; 2016 Aug; 48(2):181-8. PubMed ID: 27424598 [TBL] [Abstract][Full Text] [Related]
42. Development and antimicrobial susceptibility studies of in vitro monomicrobial and polymicrobial biofilm models with Aspergillus fumigatus and Pseudomonas aeruginosa. Manavathu EK; Vager DL; Vazquez JA BMC Microbiol; 2014 Mar; 14():53. PubMed ID: 24588809 [TBL] [Abstract][Full Text] [Related]
43. Interspecies interactions in mixed-species biofilms formed by Mariani F; Juarez GE; Barberis C; Veiga F; Vay C; Galvan EM Biofouling; 2023; 39(5):579-590. PubMed ID: 37482939 [TBL] [Abstract][Full Text] [Related]
44. Characterizations of the viability and gene expression of dispersal cells from Pseudomonas aeruginosa biofilms released by alginate lyase and tobramycin. Daboor SM; Raudonis R; Cheng Z PLoS One; 2021; 16(10):e0258950. PubMed ID: 34695148 [TBL] [Abstract][Full Text] [Related]
45. Attenuation of Enterococcus faecalis biofilm formation by Rhodethrin: A combinatorial study with an antibiotic. Tatta ER; Kumavath R Microb Pathog; 2022 Feb; 163():105401. PubMed ID: 35032606 [TBL] [Abstract][Full Text] [Related]
46. Dispersal of a dominant competitor can drive multispecies coexistence in biofilms. Holt JD; Schultz D; Nadell CD Curr Biol; 2024 Sep; 34(18):4129-4142.e4. PubMed ID: 39163856 [TBL] [Abstract][Full Text] [Related]
47. Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal. Skariyachan S; Sridhar VS; Packirisamy S; Kumargowda ST; Challapilli SB Folia Microbiol (Praha); 2018 Jul; 63(4):413-432. PubMed ID: 29352409 [TBL] [Abstract][Full Text] [Related]
48. The Susceptibility to Calcium Hydroxide Modulated by the Essential walR Gene Reveals the Role for Enterococcus faecalis Biofilm Aggregation. Wu S; Liu Y; Zhang H; Lei L J Endod; 2019 Mar; 45(3):295-301.e2. PubMed ID: 30803536 [TBL] [Abstract][Full Text] [Related]
49. D-amino acids enhance the activity of antimicrobials against biofilms of clinical wound isolates of Staphylococcus aureus and Pseudomonas aeruginosa. Sanchez CJ; Akers KS; Romano DR; Woodbury RL; Hardy SK; Murray CK; Wenke JC Antimicrob Agents Chemother; 2014 Aug; 58(8):4353-61. PubMed ID: 24841260 [TBL] [Abstract][Full Text] [Related]
50. Evaluation of combinations of putative anti-biofilm agents and antibiotics to eradicate biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. Belfield K; Bayston R; Hajduk N; Levell G; Birchall JP; Daniel M J Antimicrob Chemother; 2017 Sep; 72(9):2531-2538. PubMed ID: 28859444 [TBL] [Abstract][Full Text] [Related]
51. The effect of berberine hydrochloride on Enterococcus faecalis biofilm formation and dispersion in vitro. Chen L; Bu Q; Xu H; Liu Y; She P; Tan R; Wu Y Microbiol Res; 2016; 186-187():44-51. PubMed ID: 27242142 [TBL] [Abstract][Full Text] [Related]
54. The effects of D-Tyrosine combined with amikacin on the biofilms of Pseudomonas aeruginosa. She P; Chen L; Liu H; Zou Y; Luo Z; Koronfel A; Wu Y Microb Pathog; 2015 Sep; 86():38-44. PubMed ID: 26188263 [TBL] [Abstract][Full Text] [Related]
55. In vitro synergism and anti-biofilm activity of ampicillin, gentamicin, ceftaroline and ceftriaxone against Enterococcus faecalis. Thieme L; Klinger-Strobel M; Hartung A; Stein C; Makarewicz O; Pletz MW J Antimicrob Chemother; 2018 Jun; 73(6):1553-1561. PubMed ID: 29506271 [TBL] [Abstract][Full Text] [Related]
56. 3,6-Di(pyridin-2-yl)-1,2,4,5-tetrazine (pytz)-capped silver nanoparticles (TzAgNPs) inhibit biofilm formation of Pseudomonas aeruginosa: a potential approach toward breaking the wall of biofilm through reactive oxygen species (ROS) generation. Chakraborty P; Joardar S; Ray S; Biswas P; Maiti D; Tribedi P Folia Microbiol (Praha); 2018 Nov; 63(6):763-772. PubMed ID: 29855854 [TBL] [Abstract][Full Text] [Related]
57. Potential of Carvacrol and Thymol in Reducing Biofilm Formation on Technical Surfaces. Walczak M; Michalska-Sionkowska M; Olkiewicz D; Tarnawska P; Warżyńska O Molecules; 2021 May; 26(9):. PubMed ID: 34066411 [TBL] [Abstract][Full Text] [Related]
58. Biofilm formation on polystyrene under different temperatures by antibiotic resistant Enterococcus faecalis and Enterococcus faecium isolated from food. Marinho AR; Martins PD; Ditmer EM; d'Azevedo PA; Frazzon J; Van Der Sand ST; Frazzon AP Braz J Microbiol; 2013; 44(2):423-6. PubMed ID: 24294231 [TBL] [Abstract][Full Text] [Related]
59. Effect of culture media and nutrients on biofilm growth kinetics of laboratory and clinical strains of Enterococcus faecalis. Seneviratne CJ; Yip JW; Chang JW; Zhang CF; Samaranayake LP Arch Oral Biol; 2013 Oct; 58(10):1327-34. PubMed ID: 23880095 [TBL] [Abstract][Full Text] [Related]
60. Susceptibility of Vascular Implants to Colonization in vitro by Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and Pseudomonas aeruginosa. Woźniak W; Kozińska A; Ciostek P; Sitkiewicz I Pol J Microbiol; 2017 Mar; 66(1):125-129. PubMed ID: 29359697 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]