BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36451701)

  • 1. Photoacoustic signal-to-noise ratio comparison for pulse and continuous waveforms of very low optical fluence.
    Kang D
    J Biomed Opt; 2022 Jul; 27(7):076006. PubMed ID: 36451701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Waveform engineering analysis of photoacoustic radar chirp parameters for spatial resolution and SNR optimization.
    Sun Z; Baddour N; Mandelis A
    Photoacoustics; 2019 Jun; 14():49-66. PubMed ID: 31193128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison between pulsed laser and frequency-domain photoacoustic modalities: signal-to-noise ratio, contrast, resolution, and maximum depth detectivity.
    Lashkari B; Mandelis A
    Rev Sci Instrum; 2011 Sep; 82(9):094903. PubMed ID: 21974612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of intensity-modulated continuous-wave lasers with a chirped modulation frequency to pulsed lasers for photoacoustic imaging applications.
    Petschke A; La Rivière PJ
    Biomed Opt Express; 2010 Oct; 1(4):1188-1195. PubMed ID: 21258540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoacoustic correlation signal-to-noise ratio enhancement by coherent averaging and optical waveform optimization.
    Telenkov SA; Alwi R; Mandelis A
    Rev Sci Instrum; 2013 Oct; 84(10):104907. PubMed ID: 24182151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal singular value decomposition for denoising in photoacoustic imaging with a low-energy excitation light source.
    Shi M; Vercauteren T; Xia W
    Biomed Opt Express; 2022 Dec; 13(12):6416-6430. PubMed ID: 36589568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. U-Net enhanced real-time LED-based photoacoustic imaging.
    Paul A; Mallidi S
    J Biophotonics; 2024 Jun; 17(6):e202300465. PubMed ID: 38622811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoacoustic Signal Enhancement: Towards Utilization of Low Energy Laser Diodes in Real-Time Photoacoustic Imaging.
    Manwar R; Hosseinzadeh M; Hariri A; Kratkiewicz K; Noei S; N Avanaki MR
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30336570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chirp-encoded excitation for dual-frequency ultrasound tissue harmonic imaging.
    Shen CC; Lin CH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Nov; 59(11):2420-30. PubMed ID: 23192805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High power visible light emitting diodes as pulsed excitation sources for biomedical photoacoustics.
    Allen TJ; Beard PC
    Biomed Opt Express; 2016 Apr; 7(4):1260-70. PubMed ID: 27446652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signal-to-noise analysis of biomedical photoacoustic measurements in time and frequency domains.
    Telenkov S; Mandelis A
    Rev Sci Instrum; 2010 Dec; 81(12):124901. PubMed ID: 21198041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transducer-matched multipulse excitation for signal-to-noise ratio improvement in diode laser-based photoacoustic systems.
    Cherkashin MN; Brenner C; Hofmann MR
    J Biomed Opt; 2019 Apr; 24(4):1-8. PubMed ID: 30968647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive Light Modulation for Improved Resolution and Efficiency in All-Optical Pulse-Echo Ultrasound.
    Alles EJ; Colchester RJ; Desjardins AE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jan; 63(1):83-90. PubMed ID: 26552084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of pulse synthesis for optimization of photoacoustic measurements.
    Sheinfeld A; Bergman E; Gilead S; Eyal A
    Opt Express; 2009 Apr; 17(9):7328-38. PubMed ID: 19399111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography.
    Bauer AQ; Nothdurft RE; Erpelding TN; Wang LV; Culver JP
    J Biomed Opt; 2011 Sep; 16(9):096016. PubMed ID: 21950930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave photonic radar system with improved SNR performance utilizing optical resonant amplification and random Fourier coefficient waveforms.
    Liu C; Xie Q; Wang R; Yang J; Ma W; Li W; Wu Y
    Opt Express; 2023 May; 31(10):15537-15552. PubMed ID: 37157653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoacoustic Imaging of Human Vasculature Using LED versus Laser Illumination: A Comparison Study on Tissue Phantoms and In Vivo Humans.
    Agrawal S; Kuniyil Ajith Singh M; Johnstonbaugh K; C Han D; R Pameijer C; Kothapalli SR
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33435375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of LFM Radar Signals and Chirp Rate Estimation Based on Time-Frequency Rate Distribution.
    Swiercz E; Janczak D; Konopko K
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling toolchain for realistic simulation of photoacoustic data acquisition.
    Muller JW; Arabul MÜ; Schwab HM; Rutten MCM; van Sambeek MRHM; Wu M; Lopata RGP
    J Biomed Opt; 2022 Sep; 27(9):. PubMed ID: 36104838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single laser pulse generates dual photoacoustic signals for differential contrast photoacoustic imaging.
    Gao F; Feng X; Zhang R; Liu S; Ding R; Kishor R; Zheng Y
    Sci Rep; 2017 Apr; 7(1):626. PubMed ID: 28377616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.