These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36452452)

  • 1. Delivery of stable ultra-thin liquid sheets in vacuum for biochemical spectroscopy.
    Barnard JCT; Lee JP; Alexander O; Jarosch S; Garratt D; Picciuto R; Kowalczyk K; Ferchaud C; Gregory A; Matthews M; Marangos JP
    Front Mol Biosci; 2022; 9():1044610. PubMed ID: 36452452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A liquid flatjet system for solution phase soft-x-ray spectroscopy.
    Ekimova M; Quevedo W; Faubel M; Wernet P; Nibbering ET
    Struct Dyn; 2015 Sep; 2(5):054301. PubMed ID: 26798824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid-sheet jets for terahertz spectroscopy.
    Kondoh M; Tsubouchi M
    Opt Express; 2014 Jun; 22(12):14135-47. PubMed ID: 24977512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature measurements of liquid flat jets in vacuum.
    Chang YP; Yin Z; Balciunas T; Wörner HJ; Wolf JP
    Struct Dyn; 2022 Jan; 9(1):014901. PubMed ID: 35224132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micrometer-thickness liquid sheet jets flowing in vacuum.
    Galinis G; Strucka J; Barnard JCT; Braun A; Smith RA; Marangos JP
    Rev Sci Instrum; 2017 Aug; 88(8):083117. PubMed ID: 28863712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation and simple characterization of flat, liquid jets.
    Menzi S; Knopp G; Al Haddad A; Augustin S; Borca C; Gashi D; Huthwelker T; James D; Jin J; Pamfilidis G; Schnorr K; Sun Z; Wetter R; Zhang Q; Cirelli C
    Rev Sci Instrum; 2020 Oct; 91(10):105109. PubMed ID: 33138597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sub-micron thick liquid sheets produced by isotropically etched glass nozzles.
    Crissman CJ; Mo M; Chen Z; Yang J; Huyke DA; Glenzer SH; Ledbetter K; F Nunes JP; Ng ML; Wang H; Shen X; Wang X; DePonte DP
    Lab Chip; 2022 Mar; 22(7):1365-1373. PubMed ID: 35234235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of two ultra-low-volume spray nozzle systems by using a multiple swath scenario for the aerial application of fenthion against adult mosquitoes.
    Dukes J; Zhong H; Greer M; Hester P; Hogan D; Barber JA
    J Am Mosq Control Assoc; 2004 Mar; 20(1):36-44. PubMed ID: 15088703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of the spray application technology in bay laurel (Laurus nobilis).
    Nuyttens D; Braekman P; Foque D
    Commun Agric Appl Biol Sci; 2009; 74(1):85-90. PubMed ID: 20218514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D printed nozzles on a silicon fluidic chip.
    Bohne S; Heymann M; Chapman HN; Trieu HK; Bajt S
    Rev Sci Instrum; 2019 Mar; 90(3):035108. PubMed ID: 30927802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of a theoretical model for fan nozzles with precise atomization angles for plant protection.
    Chen C; Li S; Wu X; Zheng Y; Wang Y; Kang F
    Chemosphere; 2022 Jan; 287(Pt 2):132017. PubMed ID: 34509008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic liquid sheets as large-area targets for high repetition XFELs.
    Hoffman DJ; Van Driel TB; Kroll T; Crissman CJ; Ryland ES; Nelson KJ; Cordones AA; Koralek JD; DePonte DP
    Front Mol Biosci; 2022; 9():1048932. PubMed ID: 36567947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser-diffraction characterization of flat-fan nozzles used to develop aerosol clouds of aerially applied mosquito adulticides.
    Hornby JA; Robinson J; Opp W; Sterling M
    J Am Mosq Control Assoc; 2006 Dec; 22(4):702-6. PubMed ID: 17304940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DRIFT POTENTIAL OF TILTED SHIELDED ROTARY ATOMISERS BASED ON WIND TUNNEL MEASUREMENTS.
    Salah SO; Massinon M; De Cock N; Schiffers B; Lebeau F
    Commun Agric Appl Biol Sci; 2015; 80(3):303-12. PubMed ID: 27141728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid Heterostructures: Generation of Liquid-Liquid Interfaces in Free-Flowing Liquid Sheets.
    Hoffman DJ; Bechtel HA; Huyke DA; Santiago JG; DePonte DP; Koralek JD
    Langmuir; 2022 Oct; 38(42):12822-12832. PubMed ID: 36220141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of spray nozzle design on fish oil-whey protein microcapsule properties.
    Legako J; Dunford NT
    J Food Sci; 2010 Aug; 75(6):E394-400. PubMed ID: 20722925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic liquid jet system with compatibility for atmospheric and high-vacuum conditions.
    Trebbin M; Krüger K; DePonte D; Roth SV; Chapman HN; Förster S
    Lab Chip; 2014 May; 14(10):1733-45. PubMed ID: 24671443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of two spray nozzle systems used to aerially apply the ultra-low-volume adulticide fenthion.
    Dukes J; Zhong H; Greer M; Hester P; Hogan D; Barber JA
    J Am Mosq Control Assoc; 2004 Mar; 20(1):27-35. PubMed ID: 15088702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative Geometric Arrangements of the Nozzle Outlet Orifice for Liquid Micro-Jet Focusing in Gas Dynamic Virtual Nozzles.
    Šarler B; Zahoor R; Bajt S
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33807027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vacuum pressure generation via microfabricated converging-diverging nozzles for operation of automated pneumatic logic.
    Christoforidis T; Werner EM; Hui EE; Eddington DT
    Biomed Microdevices; 2016 Aug; 18(4):74. PubMed ID: 27469475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.