These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 36453398)

  • 41. A Review and Bibliometric Analysis of Studies on Advances in Peripheral Nerve Regeneration.
    McBenedict B; Hauwanga WN; Escudeiro G; Petrus D; Onabanjo BB; Johnny C; Omer M; Amaravadhi AR; Felix A; Dang NB; Adolphsson L; Lima Pessôa B
    Cureus; 2024 Sep; 16(9):e69515. PubMed ID: 39416551
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A dose-dependent facilitation and inhibition of peripheral nerve regeneration by brain-derived neurotrophic factor.
    Boyd JG; Gordon T
    Eur J Neurosci; 2002 Feb; 15(4):613-26. PubMed ID: 11886442
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pathways regulating modality-specific axonal regeneration in peripheral nerve.
    Wood MD; Mackinnon SE
    Exp Neurol; 2015 Mar; 265():171-5. PubMed ID: 25681572
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The pros and cons of growth factors and cytokines in peripheral axon regeneration.
    Klimaschewski L; Hausott B; Angelov DN
    Int Rev Neurobiol; 2013; 108():137-71. PubMed ID: 24083434
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recent Strategies in Tissue Engineering for Guided Peripheral Nerve Regeneration.
    Belanger K; Dinis TM; Taourirt S; Vidal G; Kaplan DL; Egles C
    Macromol Biosci; 2016 Apr; 16(4):472-81. PubMed ID: 26748820
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vitro efficacy of a gene-activated nerve guidance conduit incorporating non-viral PEI-pDNA nanoparticles carrying genes encoding for NGF, GDNF and c-Jun.
    Lackington WA; Raftery RM; O'Brien FJ
    Acta Biomater; 2018 Jul; 75():115-128. PubMed ID: 29885855
    [TBL] [Abstract][Full Text] [Related]  

  • 47. ErbB2 blockade with Herceptin (trastuzumab) enhances peripheral nerve regeneration after repair of acute or chronic peripheral nerve injury.
    Hendry JM; Alvarez-Veronesi MC; Placheta E; Zhang JJ; Gordon T; Borschel GH
    Ann Neurol; 2016 Jul; 80(1):112-26. PubMed ID: 27159537
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 3D multi-channel bi-functionalized silk electrospun conduits for peripheral nerve regeneration.
    Dinis TM; Elia R; Vidal G; Dermigny Q; Denoeud C; Kaplan DL; Egles C; Marin F
    J Mech Behav Biomed Mater; 2015 Jan; 41():43-55. PubMed ID: 25460402
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Matrices, scaffolds & carriers for cell delivery in nerve regeneration.
    Wang ZZ; Sakiyama-Elbert SE
    Exp Neurol; 2019 Sep; 319():112837. PubMed ID: 30291854
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Role of Biomaterials in Peripheral Nerve and Spinal Cord Injury: A Review.
    Kaplan B; Levenberg S
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163168
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Peripheral Nerve Regeneration and Muscle Reinnervation.
    Gordon T
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33212795
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The impact of physical, biochemical, and electrical signaling on Schwann cell plasticity.
    Smith CS; Orkwis JA; Bryan AE; Xu Z; Harris GM
    Eur J Cell Biol; 2022; 101(4):151277. PubMed ID: 36265214
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Insulin-Like Growth Factor-1: A Promising Therapeutic Target for Peripheral Nerve Injury.
    Slavin BR; Sarhane KA; von Guionneau N; Hanwright PJ; Qiu C; Mao HQ; Höke A; Tuffaha SH
    Front Bioeng Biotechnol; 2021; 9():695850. PubMed ID: 34249891
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Advances in the repair of segmental nerve injuries and trends in reconstruction.
    Pan D; Mackinnon SE; Wood MD
    Muscle Nerve; 2020 Jun; 61(6):726-739. PubMed ID: 31883129
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microvesicles from Schwann-Like Cells as a New Biomaterial Promote Axonal Growth.
    Ye K; Yu J; Li L; Wang H; Tang B; Ni W; Zhou J; Ling Y; Lu X; Niu D; Ramalingam M; Hu J
    J Biomed Nanotechnol; 2021 Feb; 17(2):291-302. PubMed ID: 33785099
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Irreversible changes occurring in long-term denervated Schwann cells affect delayed nerve repair.
    Ronchi G; Cillino M; Gambarotta G; Fornasari BE; Raimondo S; Pugliese P; Tos P; Cordova A; Moschella F; Geuna S
    J Neurosurg; 2017 Oct; 127(4):843-856. PubMed ID: 28059646
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression.
    Geremia NM; Gordon T; Brushart TM; Al-Majed AA; Verge VM
    Exp Neurol; 2007 Jun; 205(2):347-59. PubMed ID: 17428474
    [TBL] [Abstract][Full Text] [Related]  

  • 58. GDNF to the rescue: GDNF delivery effects on motor neurons and nerves, and muscle re-innervation after peripheral nerve injuries.
    Cintron-Colon AF; Almeida-Alves G; VanGyseghem JM; Spitsbergen JM
    Neural Regen Res; 2022 Apr; 17(4):748-753. PubMed ID: 34472460
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biologic strategies to improve nerve regeneration after peripheral nerve repair.
    Fowler JR; Lavasani M; Huard J; Goitz RJ
    J Reconstr Microsurg; 2015 May; 31(4):243-8. PubMed ID: 25503421
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Peripheral Nerve Injury: Current Challenges, Conventional Treatment Approaches, and New Trends in Biomaterials-Based Regenerative Strategies.
    López-Cebral R; Silva-Correia J; Reis RL; Silva TH; Oliveira JM
    ACS Biomater Sci Eng; 2017 Dec; 3(12):3098-3122. PubMed ID: 33445354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.