These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 36453725)
1. Competition between ultralong organic phosphorescence and thermally activated delayed fluorescence in dichloro derivatives of 9-benzoylcarbazole. Sidat A; Hernández FJ; Stojanović L; Misquitta AJ; Crespo-Otero R Phys Chem Chem Phys; 2022 Dec; 24(48):29437-29450. PubMed ID: 36453725 [TBL] [Abstract][Full Text] [Related]
2. Manipulating the Stacking of Triplet Chromophores in the Crystal Form for Ultralong Organic Phosphorescence. Gan N; Wang X; Ma H; Lv A; Wang H; Wang Q; Gu M; Cai S; Zhang Y; Fu L; Zhang M; Dong C; Yao W; Shi H; An Z; Huang W Angew Chem Int Ed Engl; 2019 Oct; 58(40):14140-14145. PubMed ID: 31359548 [TBL] [Abstract][Full Text] [Related]
3. Ultralong Organic Phosphorescence: From Material Design to Applications. Shi H; Yao W; Ye W; Ma H; Huang W; An Z Acc Chem Res; 2022 Dec; 55(23):3445-3459. PubMed ID: 36368944 [TBL] [Abstract][Full Text] [Related]
4. Regulation of Thermally Activated Delayed Fluorescence to Room-Temperature Phosphorescent Emission Channels by Controlling the Excited-States Dynamics via J- and H-Aggregation. Li S; Fu L; Xiao X; Geng H; Liao Q; Liao Y; Fu H Angew Chem Int Ed Engl; 2021 Aug; 60(33):18059-18064. PubMed ID: 34075684 [TBL] [Abstract][Full Text] [Related]
5. Synergistic Generation and Accumulation of Triplet Excitons for Efficient Ultralong Organic Phosphorescence. Chen J; Chen X; Cao L; Deng H; Chi Z; Liu B Angew Chem Int Ed Engl; 2022 Jun; 61(24):e202200343. PubMed ID: 35355396 [TBL] [Abstract][Full Text] [Related]
6. Manipulating the Ultralong Organic Phosphorescence of Small Molecular Crystals. Jia W; Wang Q; Shi H; An Z; Huang W Chemistry; 2020 Apr; 26(20):4437-4448. PubMed ID: 31788882 [TBL] [Abstract][Full Text] [Related]
7. Impact of secondary donor units on the excited-state properties and thermally activated delayed fluorescence (TADF) efficiency of pentacarbazole-benzonitrile emitters. Cho E; Liu L; Coropceanu V; Brédas JL J Chem Phys; 2020 Oct; 153(14):144708. PubMed ID: 33086823 [TBL] [Abstract][Full Text] [Related]
8. Highly Efficient Ultralong Organic Phosphorescence through Intramolecular-Space Heavy-Atom Effect. Shi H; Song L; Ma H; Sun C; Huang K; Lv A; Ye W; Wang H; Cai S; Yao W; Zhang Y; Zheng R; An Z; Huang W J Phys Chem Lett; 2019 Feb; 10(3):595-600. PubMed ID: 30672299 [TBL] [Abstract][Full Text] [Related]
9. Photophysics of thermally activated delayed fluorescence molecules. Dias FB; Penfold TJ; Monkman AP Methods Appl Fluoresc; 2017 Mar; 5(1):012001. PubMed ID: 28276340 [TBL] [Abstract][Full Text] [Related]
10. The Importance of Vibronic Coupling for Efficient Reverse Intersystem Crossing in Thermally Activated Delayed Fluorescence Molecules. Gibson J; Monkman AP; Penfold TJ Chemphyschem; 2016 Oct; 17(19):2956-2961. PubMed ID: 27338655 [TBL] [Abstract][Full Text] [Related]
11. Non-adiabatic conformation distortion charge transfer enables dual emission of thermally activated delayed fluorescence and room temperature phosphorescence. Guo Y; Guan H; Li P; Wang C; Wang Y; Zhang J; Zhao G Spectrochim Acta A Mol Biomol Spectrosc; 2024 Apr; 311():124032. PubMed ID: 38364513 [TBL] [Abstract][Full Text] [Related]
13. Design Approach of Lifetime Extending Thermally Activated Delayed Fluorescence Sensitizers for Highly Efficient Fluorescence Devices. Yoon SJ; Kim JH; Chung WJ; Lee JY Chemistry; 2021 Feb; 27(9):3065-3073. PubMed ID: 33188526 [TBL] [Abstract][Full Text] [Related]
14. Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics. Tao Y; Yuan K; Chen T; Xu P; Li H; Chen R; Zheng C; Zhang L; Huang W Adv Mater; 2014 Dec; 26(47):7931-58. PubMed ID: 25230116 [TBL] [Abstract][Full Text] [Related]
15. Synergistic Intra- and Intermolecular Noncovalent Interactions for Ultralong Organic Phosphorescence. Li XN; Yang M; Chen XL; Jia JH; Zhao WW; Wu XY; Wang SS; Meng L; Lu CZ Small; 2019 Nov; 15(45):e1903270. PubMed ID: 31535783 [TBL] [Abstract][Full Text] [Related]
16. Thermally activated delayed fluorescence in a mechanically soft charge-transfer complex: role of the locally excited state. Kalita KJ; Mondal S; Reddy CM; Vijayaraghavan RK Chem Sci; 2023 Dec; 14(47):13870-13878. PubMed ID: 38075669 [TBL] [Abstract][Full Text] [Related]
17. Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters. Dias FB; Bourdakos KN; Jankus V; Moss KC; Kamtekar KT; Bhalla V; Santos J; Bryce MR; Monkman AP Adv Mater; 2013 Jul; 25(27):3707-14. PubMed ID: 23703877 [TBL] [Abstract][Full Text] [Related]
18. Self-Assembled Helical Arrays for the Stabilization of the Triplet State. Nidhankar AD; Goudappagouda ; Mohana Kumari DS; Chaubey SK; Nayak R; Gonnade RG; Kumar GVP; Krishnan R; Babu SS Angew Chem Int Ed Engl; 2020 Jul; 59(31):13079-13085. PubMed ID: 32367621 [TBL] [Abstract][Full Text] [Related]
19. Long-Lived Organic Room-Temperature Phosphorescence from Amorphous Polymer Systems. Guo J; Yang C; Zhao Y Acc Chem Res; 2022 Apr; 55(8):1160-1170. PubMed ID: 35394748 [TBL] [Abstract][Full Text] [Related]
20. Managing Locally Excited and Charge-Transfer Triplet States to Facilitate Up-Conversion in Red TADF Emitters That Are Available for Both Vacuum- and Solution-Processes. Chen JX; Xiao YF; Wang K; Sun D; Fan XC; Zhang X; Zhang M; Shi YZ; Yu J; Geng FX; Lee CS; Zhang XH Angew Chem Int Ed Engl; 2021 Feb; 60(5):2478-2484. PubMed ID: 33080106 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]