BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 36454108)

  • 1. Natural products of pentacyclic triterpenoids: from discovery to heterologous biosynthesis.
    Li Y; Wang J; Li L; Song W; Li M; Hua X; Wang Y; Yuan J; Xue Z
    Nat Prod Rep; 2023 Aug; 40(8):1303-1353. PubMed ID: 36454108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. P450s and UGTs: Key Players in the Structural Diversity of Triterpenoid Saponins.
    Seki H; Tamura K; Muranaka T
    Plant Cell Physiol; 2015 Aug; 56(8):1463-71. PubMed ID: 25951908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic stimulation-elicited transcriptional responses and biosynthesis of acylated triterpenoids precursors in the medicinal plant Helicteres angustifolia.
    Huang Y; An W; Yang Z; Xie C; Liu S; Zhan T; Pan H; Zheng X
    BMC Plant Biol; 2022 Feb; 22(1):86. PubMed ID: 35216551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in biosynthesis of triterpenoid saponins in medicinal plants.
    Yao L; Lu J; Wang J; Gao WY
    Chin J Nat Med; 2020 Jun; 18(6):417-424. PubMed ID: 32503733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of Plant Triterpenoid Saponins in Microbial Cell Factories.
    Zhao YJ; Li C
    J Agric Food Chem; 2018 Nov; 66(46):12155-12165. PubMed ID: 30387353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in triterpenoid pathway elucidation and engineering.
    Dinday S; Ghosh S
    Biotechnol Adv; 2023 Nov; 68():108214. PubMed ID: 37478981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diverse triterpene skeletons are derived from the expansion and divergent evolution of 2,3-oxidosqualene cyclases in plants.
    Wang J; Guo Y; Yin X; Wang X; Qi X; Xue Z
    Crit Rev Biochem Mol Biol; 2022 Apr; 57(2):113-132. PubMed ID: 34601979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L.) Urban.
    James JT; Dubery IA
    Molecules; 2009 Oct; 14(10):3922-41. PubMed ID: 19924039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of triterpenoid saponins in plants.
    Haralampidis K; Trojanowska M; Osbourn AE
    Adv Biochem Eng Biotechnol; 2002; 75():31-49. PubMed ID: 11783842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and genome organization of saponin pathway genes from a wild crucifer, and their use for transient production of saponins in Nicotiana benthamiana.
    Khakimov B; Kuzina V; Erthmann PØ; Fukushima EO; Augustin JM; Olsen CE; Scholtalbers J; Volpin H; Andersen SB; Hauser TP; Muranaka T; Bak S
    Plant J; 2015 Nov; 84(3):478-90. PubMed ID: 26333142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthetic characterization of the antifungal fernane-type triterpenoid polytolypin for generation of new analogues
    Li XY; Lv JM; Cao ZQ; Wang GQ; Lin FL; Chen GD; Qin SY; Hu D; Gao H; Yao XS
    Org Biomol Chem; 2023 Jan; 21(4):851-857. PubMed ID: 36602159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosome-level genome assembly of Prunella vulgaris L. provides insights into pentacyclic triterpenoid biosynthesis.
    Zhang S; Meng F; Pan X; Qiu X; Li C; Lu S
    Plant J; 2024 May; 118(3):731-752. PubMed ID: 38226777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel trends for producing plant triterpenoids in yeast.
    Sun W; Qin L; Xue H; Yu Y; Ma Y; Wang Y; Li C
    Crit Rev Biotechnol; 2019 Aug; 39(5):618-632. PubMed ID: 31068012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant triterpenoid saponins: biosynthesis, in vitro production, and pharmacological relevance.
    Biswas T; Dwivedi UN
    Protoplasma; 2019 Nov; 256(6):1463-1486. PubMed ID: 31297656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotechnological production of betulinic acid and derivatives and their applications.
    An T; Zha W; Zi J
    Appl Microbiol Biotechnol; 2020 Apr; 104(8):3339-3348. PubMed ID: 32112133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel targets of pentacyclic triterpenoids in Staphylococcus aureus: A systematic review.
    Chung PY
    Phytomedicine; 2020 Jul; 73():152933. PubMed ID: 31103429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterization of the pentacyclic triterpenoid biosynthetic pathway in Catharanthus roseus.
    Huang L; Li J; Ye H; Li C; Wang H; Liu B; Zhang Y
    Planta; 2012 Nov; 236(5):1571-81. PubMed ID: 22837051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular cloning and functional characterization of multiple ApOSCs from Andrographis paniculata.
    Wang J; Lin HX; Zhao H; Guo J; Su P; Yang J; Wu XY; Huang LQ; Gao W
    Chin J Nat Med; 2020 Sep; 18(9):659-665. PubMed ID: 32928509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives.
    Moses T; Papadopoulou KK; Osbourn A
    Crit Rev Biochem Mol Biol; 2014; 49(6):439-62. PubMed ID: 25286183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pentacyclic triterpenoids and their saponins with apoptosis-inducing activity.
    Wang SR; Fang WS
    Curr Top Med Chem; 2009; 9(16):1581-96. PubMed ID: 19903161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.