BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36454270)

  • 1. The role of copper chromite nanoparticles on physical and bio properties of scaffolds based on poly(glycerol-azelaic acid) for application in tissue engineering fields.
    Heydari M; Goodarzi V; Shams M; Kazemi NM; Salimi A
    Cell Tissue Res; 2023 Feb; 391(2):357-373. PubMed ID: 36454270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new nanocomposite scaffold based on polyurethane and clay nanoplates for osteogenic differentiation of human mesenchymal stem cells in vitro.
    Norouz F; Halabian R; Salimi A; Ghollasi M
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109857. PubMed ID: 31349533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new hydrogel with fluorapatite nanoparticles for osteogenic differentiation of human adipose-derived stem cells in tissue engineering field.
    Rohani Z; Ghollasi M; Aghamollaei H; Saidi H; Halabian R; Kheirollahzadeh F; Poormoghadam D
    Cell Tissue Res; 2022 Dec; 390(3):399-411. PubMed ID: 36152061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocomposite scaffolds composed of Apacite (apatite-calcite) nanostructures, poly (ε-caprolactone) and poly (2-hydroxyethylmethacrylate): The effect of nanostructures on physico-mechanical properties and osteogenic differentiation of human bone marrow mesenchymal stem cells in vitro.
    Shams M; Karimi M; Heydari M; Salimi A
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111271. PubMed ID: 32919635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity.
    Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C
    Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel hydrogel scaffold contained bioactive glass nanowhisker (BGnW) for osteogenic differentiation of human mesenchymal stem cells (hMSCs) in vitro.
    Azizipour E; Aghamollaei H; Halabian R; Poormoghadam D; Saffari M; Entezari M; Salimi A
    Int J Biol Macromol; 2021 Mar; 174():562-572. PubMed ID: 33434552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly-l-lactic acid scaffold incorporated chitosan-coated mesoporous silica nanoparticles as pH-sensitive composite for enhanced osteogenic differentiation of human adipose tissue stem cells by dexamethasone delivery.
    Porgham Daryasari M; Dusti Telgerd M; Hossein Karami M; Zandi-Karimi A; Akbarijavar H; Khoobi M; Seyedjafari E; Birhanu G; Khosravian P; SadatMahdavi F
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):4020-4029. PubMed ID: 31595797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Baghdadite nanoparticle-coated poly l-lactic acid (PLLA) ceramics scaffold improved osteogenic differentiation of adipose tissue-derived mesenchymal stem cells.
    Karimi Z; Seyedjafari E; Mahdavi FS; Hashemi SM; Khojasteh A; Kazemi B; Mohammadi-Yeganeh S
    J Biomed Mater Res A; 2019 Jun; 107(6):1284-1293. PubMed ID: 30706628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous chitosan derivative scaffolds affect proliferation and osteogenesis of mesenchymal stem cell via reducing intracellular ROS.
    Wang J; Zhou L; Sun Q; Cai H; Tan WS
    Carbohydr Polym; 2020 Jun; 237():116108. PubMed ID: 32241448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioactive glass ceramic nanoparticles-coated poly(l-lactic acid) scaffold improved osteogenic differentiation of adipose stem cells in equine.
    Mahdavi FS; Salehi A; Seyedjafari E; Mohammadi-Sangcheshmeh A; Ardeshirylajimi A
    Tissue Cell; 2017 Oct; 49(5):565-572. PubMed ID: 28851519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoclay-enriched poly(ɛ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells.
    Gaharwar AK; Mukundan S; Karaca E; Dolatshahi-Pirouz A; Patel A; Rangarajan K; Mihaila SM; Iviglia G; Zhang H; Khademhosseini A
    Tissue Eng Part A; 2014 Aug; 20(15-16):2088-101. PubMed ID: 24842693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering.
    Kao CT; Lin CC; Chen YW; Yeh CH; Fang HY; Shie MY
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():165-73. PubMed ID: 26249577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Nanocomposite Scaffold Based on Polyurethane (PU) Containing Cobalt Nanoparticles (CoNPs) for Bone Tissue Engineering Applications.
    Norouz F; Poormoghadam D; Halabian R; Ghiasi M; Monfaredi M; Salimi A
    Curr Stem Cell Res Ther; 2023; 18(8):1120-1132. PubMed ID: 36797606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic fabrication of alendronate-loaded chitosan nanoparticles for enhanced osteogenic differentiation of stem cells.
    Moradikhah F; Doosti-Telgerd M; Shabani I; Soheili S; Dolatyar B; Seyedjafari E
    Life Sci; 2020 Aug; 254():117768. PubMed ID: 32407840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoblast-derived extracellular matrix coated PLLA/silk fibroin composite nanofibers promote osteogenic differentiation of bone mesenchymal stem cells.
    Wu Y; Zhou L; Li Y; Lou X
    J Biomed Mater Res A; 2022 Mar; 110(3):525-534. PubMed ID: 34494712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.
    Chen Y; Kawazoe N; Chen G
    Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug-eluting PCL/graphene oxide nanocomposite scaffolds for enhanced osteogenic differentiation of mesenchymal stem cells.
    Rostami F; Tamjid E; Behmanesh M
    Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111102. PubMed ID: 32600706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteogenic differentiation of human mesenchymal stem cells in 3-D Zr-Si organic-inorganic scaffolds produced by two-photon polymerization technique.
    Koroleva A; Deiwick A; Nguyen A; Schlie-Wolter S; Narayan R; Timashev P; Popov V; Bagratashvili V; Chichkov B
    PLoS One; 2015; 10(2):e0118164. PubMed ID: 25706270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteogenic differentiation potential of mesenchymal stem cells cultured on nanofibrous scaffold improved in the presence of pulsed electromagnetic field.
    Arjmand M; Ardeshirylajimi A; Maghsoudi H; Azadian E
    J Cell Physiol; 2018 Feb; 233(2):1061-1070. PubMed ID: 28419435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.