These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 36454608)
21. Predicting post-stroke pneumonia using deep neural network approaches. Ge Y; Wang Q; Wang L; Wu H; Peng C; Wang J; Xu Y; Xiong G; Zhang Y; Yi Y Int J Med Inform; 2019 Dec; 132():103986. PubMed ID: 31629312 [TBL] [Abstract][Full Text] [Related]
22. An Integrative Data Science Pipeline to Identify Novel Drug Interactions that Prolong the QT Interval. Lorberbaum T; Sampson KJ; Woosley RL; Kass RS; Tatonetti NP Drug Saf; 2016 May; 39(5):433-41. PubMed ID: 26860921 [TBL] [Abstract][Full Text] [Related]
23. Machine Learning Techniques Outperform Conventional Statistical Methods in the Prediction of High Risk QTc Prolongation Related to a Drug-Drug Interaction. Van Laere S; Muylle KM; Dupont AG; Cornu P J Med Syst; 2022 Nov; 46(12):100. PubMed ID: 36418746 [TBL] [Abstract][Full Text] [Related]
24. An integrated LSTM-HeteroRGNN model for interpretable opioid overdose risk prediction. Dong X; Wong R; Lyu W; Abell-Hart K; Deng J; Liu Y; Hajagos JG; Rosenthal RN; Chen C; Wang F Artif Intell Med; 2023 Jan; 135():102439. PubMed ID: 36628797 [TBL] [Abstract][Full Text] [Related]
25. Electronic phenotyping of health outcomes of interest using a linked claims-electronic health record database: Findings from a machine learning pilot project. Gibson TB; Nguyen MD; Burrell T; Yoon F; Wong J; Dharmarajan S; Ouellet-Hellstrom R; Hua W; Ma Y; Baro E; Bloemers S; Pack C; Kennedy A; Toh S; Ball R J Am Med Inform Assoc; 2021 Jul; 28(7):1507-1517. PubMed ID: 33712852 [TBL] [Abstract][Full Text] [Related]
26. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. Thorsen-Meyer HC; Nielsen AB; Nielsen AP; Kaas-Hansen BS; Toft P; Schierbeck J; Strøm T; Chmura PJ; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Belling K; Brunak S; Perner A Lancet Digit Health; 2020 Apr; 2(4):e179-e191. PubMed ID: 33328078 [TBL] [Abstract][Full Text] [Related]
27. Assessment of a Machine Learning Model Applied to Harmonized Electronic Health Record Data for the Prediction of Incident Atrial Fibrillation. Tiwari P; Colborn KL; Smith DE; Xing F; Ghosh D; Rosenberg MA JAMA Netw Open; 2020 Jan; 3(1):e1919396. PubMed ID: 31951272 [TBL] [Abstract][Full Text] [Related]
28. Interpretable clinical prediction via attention-based neural network. Chen P; Dong W; Wang J; Lu X; Kaymak U; Huang Z BMC Med Inform Decis Mak; 2020 Jul; 20(Suppl 3):131. PubMed ID: 32646437 [TBL] [Abstract][Full Text] [Related]
29. Marrying Medical Domain Knowledge With Deep Learning on Electronic Health Records: A Deep Visual Analytics Approach. Li R; Yin C; Yang S; Qian B; Zhang P J Med Internet Res; 2020 Sep; 22(9):e20645. PubMed ID: 32985996 [TBL] [Abstract][Full Text] [Related]
30. Development and Validation of an Electronic Health Record-Based Machine Learning Model to Estimate Delirium Risk in Newly Hospitalized Patients Without Known Cognitive Impairment. Wong A; Young AT; Liang AS; Gonzales R; Douglas VC; Hadley D JAMA Netw Open; 2018 Aug; 1(4):e181018. PubMed ID: 30646095 [TBL] [Abstract][Full Text] [Related]
31. An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU. Nemati S; Holder A; Razmi F; Stanley MD; Clifford GD; Buchman TG Crit Care Med; 2018 Apr; 46(4):547-553. PubMed ID: 29286945 [TBL] [Abstract][Full Text] [Related]
32. A wearable remote monitoring system for the identification of subjects with a prolonged QT interval or at risk for drug-induced long QT syndrome. Castelletti S; Dagradi F; Goulene K; Danza AI; Baldi E; Stramba-Badiale M; Schwartz PJ Int J Cardiol; 2018 Sep; 266():89-94. PubMed ID: 29887480 [TBL] [Abstract][Full Text] [Related]
33. Pharmacophenotype identification of intensive care unit medications using unsupervised cluster analysis of the ICURx common data model. Sikora A; Rafiei A; Rad MG; Keats K; Smith SE; Devlin JW; Murphy DJ; Murray B; Kamaleswaran R; Crit Care; 2023 May; 27(1):167. PubMed ID: 37131200 [TBL] [Abstract][Full Text] [Related]
34. Postoperative delirium prediction using machine learning models and preoperative electronic health record data. Bishara A; Chiu C; Whitlock EL; Douglas VC; Lee S; Butte AJ; Leung JM; Donovan AL BMC Anesthesiol; 2022 Jan; 22(1):8. PubMed ID: 34979919 [TBL] [Abstract][Full Text] [Related]
35. What clinicians should know about the QT interval. Al-Khatib SM; LaPointe NM; Kramer JM; Califf RM JAMA; 2003 Apr 23-30; 289(16):2120-7. PubMed ID: 12709470 [TBL] [Abstract][Full Text] [Related]
36. Prediction Model of Osteonecrosis of the Femoral Head After Femoral Neck Fracture: Machine Learning-Based Development and Validation Study. Wang H; Wu W; Han C; Zheng J; Cai X; Chang S; Shi J; Xu N; Ai Z JMIR Med Inform; 2021 Nov; 9(11):e30079. PubMed ID: 34806984 [TBL] [Abstract][Full Text] [Related]
37. COVID-19 Mortality Prediction From Deep Learning in a Large Multistate Electronic Health Record and Laboratory Information System Data Set: Algorithm Development and Validation. Sankaranarayanan S; Balan J; Walsh JR; Wu Y; Minnich S; Piazza A; Osborne C; Oliver GR; Lesko J; Bates KL; Khezeli K; Block DR; DiGuardo M; Kreuter J; O'Horo JC; Kalantari J; Klee EW; Salama ME; Kipp B; Morice WG; Jenkinson G J Med Internet Res; 2021 Sep; 23(9):e30157. PubMed ID: 34449401 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of the QT interval in patients with drug-induced QT prolongation and torsades de pointes. Krisai P; Vlachos K; Ramirez FD; Nakatani Y; Nakashima T; Takagi T; Kamakura T; Surget E; André C; Cheniti G; Welte N; Chauvel R; Tixier R; Duchateau J; Pambrun T; Derval N; Hocini M; Jaïs P; Haïssaguerre M; Sacher F J Cardiovasc Electrophysiol; 2020 Oct; 31(10):2696-2701. PubMed ID: 32700358 [TBL] [Abstract][Full Text] [Related]
39. Machine Learning-Based Predictive Modeling of Surgical Intervention in Glaucoma Using Systemic Data From Electronic Health Records. Baxter SL; Marks C; Kuo TT; Ohno-Machado L; Weinreb RN Am J Ophthalmol; 2019 Dec; 208():30-40. PubMed ID: 31323204 [TBL] [Abstract][Full Text] [Related]
40. Development and validation of machine learning models to identify high-risk surgical patients using automatically curated electronic health record data (Pythia): A retrospective, single-site study. Corey KM; Kashyap S; Lorenzi E; Lagoo-Deenadayalan SA; Heller K; Whalen K; Balu S; Heflin MT; McDonald SR; Swaminathan M; Sendak M PLoS Med; 2018 Nov; 15(11):e1002701. PubMed ID: 30481172 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]