These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36454686)

  • 21. Substrate-Controlled Catalysis in the Ether Cross-Link-Forming Radical SAM Enzymes.
    Ma S; Xi W; Wang S; Chen H; Guo S; Mo T; Chen W; Deng Z; Chen F; Ding W; Zhang Q
    J Am Chem Soc; 2023 Oct; 145(42):22945-22953. PubMed ID: 37769281
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Radical SAM-dependent ether crosslink in daropeptide biosynthesis.
    Guo S; Wang S; Ma S; Deng Z; Ding W; Zhang Q
    Nat Commun; 2022 Apr; 13(1):2361. PubMed ID: 35487921
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Post-translational formation of strained cyclophanes in bacteria.
    Nguyen TQN; Tooh YW; Sugiyama R; Nguyen TPD; Purushothaman M; Leow LC; Hanif K; Yong RHS; Agatha I; Winnerdy FR; Gugger M; Phan AT; Morinaka BI
    Nat Chem; 2020 Nov; 12(11):1042-1053. PubMed ID: 32807886
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of a Radical SAM Oxygenase for the Ether Crosslinking in Darobactin Biosynthesis.
    Nguyen H; Made Kresna ID; Böhringer N; Ruel J; Mora E; Kramer JC; Lewis K; Nicolet Y; Schäberle TF; Yokoyama K
    J Am Chem Soc; 2022 Oct; 144(41):18876-18886. PubMed ID: 36194754
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural, Biochemical, and Bioinformatic Basis for Identifying Radical SAM Cyclopropyl Synthases.
    Lien Y; Lachowicz JC; Mendauletova A; Zizola C; Ngendahimana T; Kostenko A; Eaton SS; Latham JA; Grove TL
    ACS Chem Biol; 2024 Feb; 19(2):370-379. PubMed ID: 38295270
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structures of the peptide-modifying radical SAM enzyme SuiB elucidate the basis of substrate recognition.
    Davis KM; Schramma KR; Hansen WA; Bacik JP; Khare SD; Seyedsayamdost MR; Ando N
    Proc Natl Acad Sci U S A; 2017 Sep; 114(39):10420-10425. PubMed ID: 28893989
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Radical Clock Probe Uncouples H Atom Abstraction from Thioether Cross-Link Formation by the Radical S-Adenosyl-l-methionine Enzyme SkfB.
    Kincannon WM; Bruender NA; Bandarian V
    Biochemistry; 2018 Aug; 57(32):4816-4823. PubMed ID: 29965747
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biochemical and Spectroscopic Characterization of a Radical S-Adenosyl-L-methionine Enzyme Involved in the Formation of a Peptide Thioether Cross-Link.
    Bruender NA; Wilcoxen J; Britt RD; Bandarian V
    Biochemistry; 2016 Apr; 55(14):2122-34. PubMed ID: 27007615
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Radical S-Adenosylmethionine Enzymes Involved in RiPP Biosynthesis.
    Mahanta N; Hudson GA; Mitchell DA
    Biochemistry; 2017 Oct; 56(40):5229-5244. PubMed ID: 28895719
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Radical SAM Enzymes in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs).
    Benjdia A; Balty C; Berteau O
    Front Chem; 2017; 5():87. PubMed ID: 29167789
    [TBL] [Abstract][Full Text] [Related]  

  • 31. At the confluence of ribosomally synthesized peptide modification and radical
    Latham JA; Barr I; Klinman JP
    J Biol Chem; 2017 Oct; 292(40):16397-16405. PubMed ID: 28830931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radical-mediated enzymatic methylation: a tale of two SAMS.
    Zhang Q; van der Donk WA; Liu W
    Acc Chem Res; 2012 Apr; 45(4):555-64. PubMed ID: 22097883
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accessing and exploring the unusual chemistry by radical SAM-RiPP enzymes.
    Guo Q; Morinaka BI
    Curr Opin Chem Biol; 2024 Jun; 81():102483. PubMed ID: 38917731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two dedicated class C radical S-adenosylmethionine methyltransferases concertedly catalyse the synthesis of 7,8-dimethylmenaquinone.
    Hein S; von Irmer J; Gallei M; Meusinger R; Simon J
    Biochim Biophys Acta Bioenerg; 2018 Apr; 1859(4):300-308. PubMed ID: 29408546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Radical S-Adenosyl-l-methionine Enzyme MftC Catalyzes an Oxidative Decarboxylation of the C-Terminus of the MftA Peptide.
    Bruender NA; Bandarian V
    Biochemistry; 2016 May; 55(20):2813-6. PubMed ID: 27158836
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A gene-encoded aldehyde tag repurposed from RiPP cyclophane-forming pathway.
    Ma S; Chen H; Liu S; Huang X; Mo T; Liu WQ; Zhang W; Ding W; Zhang Q
    Bioorg Med Chem Lett; 2024 Mar; 101():129653. PubMed ID: 38360420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Post-translational formylglycine modification of bacterial sulfatases by the radical S-adenosylmethionine protein AtsB.
    Fang Q; Peng J; Dierks T
    J Biol Chem; 2004 Apr; 279(15):14570-8. PubMed ID: 14749327
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biological systems discovery in silico: radical S-adenosylmethionine protein families and their target peptides for posttranslational modification.
    Haft DH; Basu MK
    J Bacteriol; 2011 Jun; 193(11):2745-55. PubMed ID: 21478363
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catalytic Site Proximity Profiling for Functional Unification of Sequence-Diverse Radical
    Precord TW; Ramesh S; Dommaraju SR; Harris LA; Kille BL; Mitchell DA
    ACS Bio Med Chem Au; 2023 Jun; 3(3):240-251. PubMed ID: 37363077
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Methods for Studying the Radical SAM Enzymes in Diphthamide Biosynthesis.
    Dong M; Zhang Y; Lin H
    Methods Enzymol; 2018; 606():421-438. PubMed ID: 30097101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.