These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36454755)

  • 1. Fatigue of red blood cells under periodic squeezes in ECMO.
    Pan Y; Li Y; Li Y; Li J; Chen H
    Proc Natl Acad Sci U S A; 2022 Dec; 119(49):e2210819119. PubMed ID: 36454755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Causes of red blood cell loss during extracorporeal membrane oxygenation.
    Bilodeau KS; Saifee NH; Chandler WL
    Transfusion; 2023 May; 63(5):933-941. PubMed ID: 36708050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red blood cell ATP release correlates with red blood cell hemolysis.
    Ferguson BS; Neidert LE; Rogatzki MJ; Lohse KR; Gladden LB; Kluess HA
    Am J Physiol Cell Physiol; 2021 Nov; 321(5):C761-C769. PubMed ID: 34495762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of extracellular ATP of human erythrocytes treated with α-hemolysin. Effects of cell volume, morphology, rheology and hemolysis.
    Leal Denis MF; Lefevre SD; Alvarez CL; Lauri N; Enrique N; Rinaldi DE; Gonzalez-Lebrero R; Vecchio LE; Espelt MV; Stringa P; Muñoz-Garay C; Milesi V; Ostuni MA; Herlax V; Schwarzbaum PJ
    Biochim Biophys Acta Mol Cell Res; 2019 May; 1866(5):896-915. PubMed ID: 30726708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased hemolysis from saline pre-washing RBCs or centrifugal pumps in neonatal ECMO.
    Masalunga C; Cruz M; Porter B; Roseff S; Chui B; Mainali E
    J Perinatol; 2007 Jun; 27(6):380-4. PubMed ID: 17443201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic fatigue measurement of human erythrocytes using dielectrophoresis.
    Qiang Y; Liu J; Du E
    Acta Biomater; 2017 Jul; 57():352-362. PubMed ID: 28526627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical fatigue of human red blood cells.
    Qiang Y; Liu J; Dao M; Suresh S; Du E
    Proc Natl Acad Sci U S A; 2019 Oct; 116(40):19828-19834. PubMed ID: 31527252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of shear-induced ATP release from red blood cells.
    Wan J; Ristenpart WD; Stone HA
    Proc Natl Acad Sci U S A; 2008 Oct; 105(43):16432-7. PubMed ID: 18922780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemolysis prediction in bio-microfluidic applications using resolved CFD-DEM simulations.
    Porcaro C; Saeedipour M
    Comput Methods Programs Biomed; 2023 Apr; 231():107400. PubMed ID: 36774792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic rejuvenation upgrades circulatory functions of red blood cells stored under blood bank conditions.
    Marin M; Roussel C; Dussiot M; Ndour PA; Hermine O; Colin Y; Gray A; Landrigan M; Le Van Kim C; Buffet PA; Amireault P
    Transfusion; 2021 Mar; 61(3):903-918. PubMed ID: 33381865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscale modeling of hemolysis during microfiltration.
    Nikfar M; Razizadeh M; Paul R; Liu Y
    Microfluid Nanofluidics; 2020 May; 24(5):. PubMed ID: 33235552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of mechanical hemolysis in medical devices via a Lagrangian strain-based multiscale model.
    Nikfar M; Razizadeh M; Zhang J; Paul R; Wu ZJ; Liu Y
    Artif Organs; 2020 Aug; 44(8):E348-E368. PubMed ID: 32017130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood unit segments accurately represent the biophysical properties of red blood cells in blood bags but not hemolysis.
    Islamzada E; Matthews K; Lamoureux E; Duffy SP; Scott MD; Ma H
    Transfusion; 2022 Feb; 62(2):448-456. PubMed ID: 34877683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of surface area and membrane shear modulus of matured human red blood cells during mechanical fatigue.
    Wei Q; Wang X; Zhang C; Dao M; Gong X
    Sci Rep; 2023 May; 13(1):8563. PubMed ID: 37237001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose depletion enhances sensitivity to shear stress-induced mechanical damage in red blood cells by rotary blood pumps.
    Sakota D; Sakamoto R; Yokoyama N; Kobayashi M; Takatani S
    Artif Organs; 2009 Sep; 33(9):733-9. PubMed ID: 19775265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deformability of red blood cells and its relation to blood trauma in rotary blood pumps.
    Watanabe N; Sakota D; Ohuchi K; Takatani S
    Artif Organs; 2007 May; 31(5):352-8. PubMed ID: 17470204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemolysis is a primary ATP-release mechanism in human erythrocytes.
    Sikora J; Orlov SN; Furuya K; Grygorczyk R
    Blood; 2014 Sep; 124(13):2150-7. PubMed ID: 25097178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Empirical and Computational Evaluation of Hemolysis in a Microfluidic Extracorporeal Membrane Oxygenator Prototype.
    Imtiaz N; Poskus MD; Stoddard WA; Gaborski TR; Day SW
    Micromachines (Basel); 2024 Jun; 15(6):. PubMed ID: 38930760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of red blood cell deformation under fast shear flow for better estimation of hemolysis.
    Nakamura M; Bessho S; Wada S
    Int J Numer Method Biomed Eng; 2014 Jan; 30(1):42-54. PubMed ID: 23949912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repetitive Supra-Physiological Shear Stress Impairs Red Blood Cell Deformability and Induces Hemolysis.
    Horobin JT; Sabapathy S; Simmonds MJ
    Artif Organs; 2017 Nov; 41(11):1017-1025. PubMed ID: 28543744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.