These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 36454989)
1. Antheraea peptide and its analog: Their influence on the maturation of the reproductive system, embryogenesis, and early larval development in Tenebrio molitor L. beetle. Walkowiak-Nowicka K; Chowański S; Pacholska-Bogalska J; Adamski Z; Kuczer M; Rosiński G PLoS One; 2022; 17(12):e0278473. PubMed ID: 36454989 [TBL] [Abstract][Full Text] [Related]
2. New activity of yamamarin, an insect pentapeptide, on immune system of mealworm, Tenebrio molitor. Walkowiak-Nowicka K; Nowicki G; Kuczer M; Rosiński G Bull Entomol Res; 2018 Jun; 108(3):351-359. PubMed ID: 28893327 [TBL] [Abstract][Full Text] [Related]
3. Effects of alloferon and its analogues on reproduction and development of the Tenebrio molitor beetle. Walkowiak-Nowicka K; Chowański S; Pacholska-Bogalska J; Adamski Z; Kuczer M; Rosiński G Sci Rep; 2024 Jul; 14(1):17016. PubMed ID: 39043811 [TBL] [Abstract][Full Text] [Related]
4. Short neuropeptide F signaling regulates functioning of male reproductive system in Tenebrio molitor beetle. Marciniak P; Urbański A; Lubawy J; Szymczak M; Pacholska-Bogalska J; Chowański S; Kuczer M; Rosiński G J Comp Physiol B; 2020 Sep; 190(5):521-534. PubMed ID: 32749520 [TBL] [Abstract][Full Text] [Related]
5. Performance of Chouioia cunea reared from a coleopteran alternative host as a biocontrol agent against the invasive lepidopteran pest, Hyphantria cunea. Li TH; Wang X; Desneux N; Song LW; Zang LS Pest Manag Sci; 2023 Apr; 79(4):1500-1507. PubMed ID: 36502497 [TBL] [Abstract][Full Text] [Related]
6. Plant secondary metabolites as potential bioinsecticides? Study of the effects of plant-derived volatile organic compounds on the reproduction and behaviour of the pest beetle Tenebrio molitor. Walkowiak-Nowicka K; Mirek J; Chowański S; Sobkowiak R; Słocińska M Ecotoxicol Environ Saf; 2023 Jun; 257():114951. PubMed ID: 37116454 [TBL] [Abstract][Full Text] [Related]
7. Functional homology of tachykinin signalling: The influence of human substance P on the immune system of the mealworm beetle, Tenebrio molitor L. Urbański A; Konopińska N; Walkowiak-Nowicka K; Roizman D; Lubawy J; Radziej M; Rolff J Dev Comp Immunol; 2023 May; 142():104669. PubMed ID: 36791872 [TBL] [Abstract][Full Text] [Related]
8. Synthesis, cardiostimulatory, and cardioinhibitory effects of selected insect peptides on Tenebrio molitor. Szymanowska-Dziubasik K; Marciniak P; Rosiński G; Konopińska D J Pept Sci; 2008 Jun; 14(6):708-13. PubMed ID: 18181232 [TBL] [Abstract][Full Text] [Related]
10. Five natural compounds of botanical origin as wheat protectants against adults and larvae of Tenebrio molitor L. and Trogoderma granarium Everts. Ntalli N; Skourti A; Nika EP; Boukouvala MC; Kavallieratos NG Environ Sci Pollut Res Int; 2021 Aug; 28(31):42763-42775. PubMed ID: 33825104 [TBL] [Abstract][Full Text] [Related]
11. Optimized pupal age of Tenebrio molitor L. (Coleoptera: Tenebrionidae) enhanced mass rearing efficiency of Chouioia cunea Yang (Hymenoptera: Eulophidae). Li TH; Che PF; Yang X; Song LW; Zhang CR; Benelli G; Desneux N; Zang LS Sci Rep; 2019 Mar; 9(1):3229. PubMed ID: 30824735 [TBL] [Abstract][Full Text] [Related]
12. Determining the Effect of Different Reproduction Factors on the Yield and Hatching of Tenebrio Molitor Eggs. Frooninckx L; Berrens S; Van Peer M; Wuyts A; Broeckx L; Van Miert S Insects; 2022 Jul; 13(7):. PubMed ID: 35886791 [TBL] [Abstract][Full Text] [Related]
13. A constitutively expressed antifungal peptide protects Tenebrio molitor during a natural infection by the entomopathogenic fungus Beauveria bassiana. Maistrou S; Paris V; Jensen AB; Rolff J; Meyling NV; Zanchi C Dev Comp Immunol; 2018 Sep; 86():26-33. PubMed ID: 29698631 [TBL] [Abstract][Full Text] [Related]
14. A possible role of tachykinin-related peptide on an immune system activity of mealworm beetle, Tenebrio molitor L. Urbański A; Konopińska N; Lubawy J; Walkowiak-Nowicka K; Marciniak P; Rolff J Dev Comp Immunol; 2021 Jul; 120():104065. PubMed ID: 33705792 [TBL] [Abstract][Full Text] [Related]
15. The Wnt gene family in Tenebrio molitor and other coleopterans. Yang L; Li GY; Li XY; Wu CY; Wang J; Song QS; Stanley D; Wei SJ; Zhu JY Arch Insect Biochem Physiol; 2022 Nov; 111(3):e21915. PubMed ID: 35584033 [TBL] [Abstract][Full Text] [Related]
16. A comparative toxic effect of Buneri ID; Yousuf M; Attaullah M; Afridi S; Anjum SI; Rana H; Ahmad N; Amin M; Tahir M; Ansari MJ Saudi J Biol Sci; 2019 Feb; 26(2):281-285. PubMed ID: 31485166 [No Abstract] [Full Text] [Related]
18. Endogenous egg immune defenses in the yellow mealworm beetle (Tenebrio molitor). Jacobs CGC; Gallagher JD; Evison SEF; Heckel DG; Vilcinskas A; Vogel H Dev Comp Immunol; 2017 May; 70():1-8. PubMed ID: 28034605 [TBL] [Abstract][Full Text] [Related]
19. Cholinergic Agonists and Antagonists Have an Effect on the Metabolism of the Beetle Chowański S; Pacholska-Bogalska J; Rosiński G Molecules; 2018 Dec; 24(1):. PubMed ID: 30577556 [TBL] [Abstract][Full Text] [Related]
20. Development and Biomass Composition of Ephestia kuehniella (Lepidoptera: Pyralidae), Tenebrio molitor (Coleoptera: Tenebrionidae), and Hermetia illucens (Diptera: Stratiomyidae) Reared on Different Byproducts of the Agri-Food Industry. Riudavets J; Castañé C; Agustí N; Del Arco L; Diaz I; Castellari M J Insect Sci; 2020 Jul; 20(4):. PubMed ID: 32809021 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]