These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 36455213)
21. Branched Polymers via ROMP of Termimers. Hanik N; Kilbinger AF Macromol Rapid Commun; 2016 Mar; 37(6):532-8. PubMed ID: 26787265 [TBL] [Abstract][Full Text] [Related]
22. Acyclic diene metathesis polymerization and heck polymer-polymer conjugation for the synthesis of star-shaped block copolymers. de Espinosa LM; Winkler M; Meier MA Macromol Rapid Commun; 2013 Sep; 34(17):1381-6. PubMed ID: 23877964 [TBL] [Abstract][Full Text] [Related]
23. Matrix-assisted and polymer-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of low molecular weight polystyrenes and polyethylene glycols. Woldegiorgis A; Löwenhielm P; Björk A; Roeraade J Rapid Commun Mass Spectrom; 2004; 18(23):2904-12. PubMed ID: 15529416 [TBL] [Abstract][Full Text] [Related]
24. "Polymeromics": Mass spectrometry based strategies in polymer science toward complete sequencing approaches: a review. Altuntaş E; Schubert US Anal Chim Acta; 2014 Jan; 808():56-69. PubMed ID: 24370093 [TBL] [Abstract][Full Text] [Related]
25. Well-defined protein-polymer conjugates via in situ RAFT polymerization. Boyer C; Bulmus V; Liu J; Davis TP; Stenzel MH; Barner-Kowollik C J Am Chem Soc; 2007 Jun; 129(22):7145-54. PubMed ID: 17500523 [TBL] [Abstract][Full Text] [Related]
26. Preparation of Bottlebrush Polymers via a One-Pot Ring-Opening Polymerization (ROP) and Ring-Opening Metathesis Polymerization (ROMP) Grafting-Through Strategy. Radzinski SC; Foster JC; Matson JB Macromol Rapid Commun; 2016 Apr; 37(7):616-21. PubMed ID: 26847467 [TBL] [Abstract][Full Text] [Related]
27. Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn H40, poly(L-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery. Prabaharan M; Grailer JJ; Pilla S; Steeber DA; Gong S Biomaterials; 2009 Jun; 30(16):3009-19. PubMed ID: 19250665 [TBL] [Abstract][Full Text] [Related]
28. PEG-PLA block copolymer as potential drug carrier: preparation and characterization. Ben-Shabat S; Kumar N; Domb AJ Macromol Biosci; 2006 Dec; 6(12):1019-25. PubMed ID: 17128420 [TBL] [Abstract][Full Text] [Related]
29. Reverse micelles prepared from amphiphilic polylactide-b-poly(ethylene glycol) block copolymers for controlled release of hydrophilic drugs. Nguyen TBT; Li S; Deratani A Int J Pharm; 2015 Nov; 495(1):154-161. PubMed ID: 26264166 [TBL] [Abstract][Full Text] [Related]
30. Acyclic diene metathesis with a monomer from renewable resources: control of molecular weight and one-step preparation of block copolymers. Rybak A; Meier MA ChemSusChem; 2008; 1(6):542-7. PubMed ID: 18702153 [TBL] [Abstract][Full Text] [Related]
31. Enzymatic degradation of block copolymers prepared from epsilon-caprolactone and poly(ethylene glycol). Li S; Garreau H; Pauvert B; McGrath J; Toniolo A; Vert M Biomacromolecules; 2002; 3(3):525-30. PubMed ID: 12005524 [TBL] [Abstract][Full Text] [Related]
33. Synthesis and drug release of star-shaped poly(benzyl L-aspartate)-block-poly(ethylene glycol) copolymers with POSS cores. Pu Y; Zhang L; Zheng H; He B; Gu Z Macromol Biosci; 2014 Feb; 14(2):289-97. PubMed ID: 23943596 [TBL] [Abstract][Full Text] [Related]
34. N-heterocyclic carbene-induced zwitterionic ring-opening polymerization of ethylene oxide and direct synthesis of alpha,omega-difunctionalized poly(ethylene oxide)s and poly(ethylene oxide)-b-poly(epsilon-caprolactone) block copolymers. Raynaud J; Absalon C; Gnanou Y; Taton D J Am Chem Soc; 2009 Mar; 131(9):3201-9. PubMed ID: 19209910 [TBL] [Abstract][Full Text] [Related]
35. Degradation and cell culture studies on block copolymers prepared by ring opening polymerization of epsilon-caprolactone in the presence of poly(ethylene glycol). Huang MH; Li S; Hutmacher DW; Schantz JT; Vacanti CA; Braud C; Vert M J Biomed Mater Res A; 2004 Jun; 69(3):417-27. PubMed ID: 15127388 [TBL] [Abstract][Full Text] [Related]
36. Amphiphilic triblock copolymers of methoxy-poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-lysine) for enhancement of osteoblast attachment and growth. Peng H; Xiao Y; Mao X; Chen L; Crawford R; Whittaker AK Biomacromolecules; 2009 Jan; 10(1):95-104. PubMed ID: 19063715 [TBL] [Abstract][Full Text] [Related]
37. Synthesis and rheological properties of polylactide/poly(ethylene glycol) multiblock copolymers. Li F; Li S; Vert M Macromol Biosci; 2005 Nov; 5(11):1125-31. PubMed ID: 16245275 [TBL] [Abstract][Full Text] [Related]
38. MALDI-TOF MS reveals the molecular level structures of different hydrophilic-hydrophobic polyether-esters. Adamus G; Hakkarainen M; Höglund A; Kowalczuk M; Albertsson AC Biomacromolecules; 2009 Jun; 10(6):1540-6. PubMed ID: 19382748 [TBL] [Abstract][Full Text] [Related]
39. Novel biodegradable block copolymers of poly(ethylene glycol) (PEG) and cationic polycarbonate: effects of peg configuration on gene delivery. Yang C; Ong ZY; Yang YY; Ee PL; Hedrick JL Macromol Rapid Commun; 2011 Nov; 32(22):1826-33. PubMed ID: 21928302 [TBL] [Abstract][Full Text] [Related]
40. Tacticity-induced changes in the micellization and degradation properties of poly(lactic acid)-block-poly(ethylene glycol) copolymers. Agatemor C; Shaver MP Biomacromolecules; 2013 Mar; 14(3):699-708. PubMed ID: 23402292 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]