BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36455255)

  • 1. Enzymatic Synthesis of DNA with an Expanded Genetic Alphabet Using Terminal Deoxynucleotidyl Transferase.
    Wang G; He C; Zou J; Liu J; Du Y; Chen T
    ACS Synth Biol; 2022 Dec; 11(12):4142-4155. PubMed ID: 36455255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-Pot Enzymatic Preparation of Oligonucleotides with an Expanded Genetic Alphabet via Controlled Pause and Restart of Primer Extension: Making Unnatural Out of Natural.
    Cao Y; Bai J; Zou J; Du Y; Chen T
    ACS Synth Biol; 2023 Sep; 12(9):2691-2706. PubMed ID: 37672623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognition of an Unnatural Base Pair by Tool Enzymes from Bacteriophages and Its Application in the Enzymatic Preparation of DNA with an Expanded Genetic Alphabet.
    Bai J; Zou J; Cao Y; Du Y; Chen T
    ACS Synth Biol; 2023 Sep; 12(9):2676-2690. PubMed ID: 37590442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progress Toward a Semi-Synthetic Organism with an Unrestricted Expanded Genetic Alphabet.
    Dien VT; Holcomb M; Feldman AW; Fischer EC; Dwyer TJ; Romesberg FE
    J Am Chem Soc; 2018 Nov; 140(47):16115-16123. PubMed ID: 30418780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terminal Deoxynucleotidyl Transferase in the Synthesis and Modification of Nucleic Acids.
    Sarac I; Hollenstein M
    Chembiochem; 2019 Apr; 20(7):860-871. PubMed ID: 30451377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolving a Thermostable Terminal Deoxynucleotidyl Transferase.
    Chua JPS; Go MK; Osothprarop T; Mcdonald S; Karabadzhak AG; Yew WS; Peisajovich S; Nirantar S
    ACS Synth Biol; 2020 Jul; 9(7):1725-1735. PubMed ID: 32497424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo DNA synthesis using polymerase-nucleotide conjugates.
    Palluk S; Arlow DH; de Rond T; Barthel S; Kang JS; Bector R; Baghdassarian HM; Truong AN; Kim PW; Singh AK; Hillson NJ; Keasling JD
    Nat Biotechnol; 2018 Aug; 36(7):645-650. PubMed ID: 29912208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applications of Terminal Deoxynucleotidyl Transferase Enzyme in Biotechnology.
    Ashley J; Potts IG; Olorunniji FJ
    Chembiochem; 2023 Mar; 24(5):e202200510. PubMed ID: 36342345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-Specific Labeling of DNA via PCR with an Expanded Genetic Alphabet.
    Ledbetter MP; Malyshev DA; Romesberg FE
    Methods Mol Biol; 2019; 1973():193-212. PubMed ID: 31016704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing Terminal Deoxynucleotidyl Transferase Activity on Substrates with 3' Terminal Structures for Enzymatic De Novo DNA Synthesis.
    Barthel S; Palluk S; Hillson NJ; Keasling JD; Arlow DH
    Genes (Basel); 2020 Jan; 11(1):. PubMed ID: 31963235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Labeling the 3' Termini of Oligonucleotides Using Terminal Deoxynucleotidyl Transferase.
    Green MR; Sambrook J
    Cold Spring Harb Protoc; 2021 Aug; 2021(8):. PubMed ID: 34341178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Vivo Structure-Activity Relationships and Optimization of an Unnatural Base Pair for Replication in a Semi-Synthetic Organism.
    Feldman AW; Romesberg FE
    J Am Chem Soc; 2017 Aug; 139(33):11427-11433. PubMed ID: 28796508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanopore Sequencing of an Expanded Genetic Alphabet Reveals High-Fidelity Replication of a Predominantly Hydrophobic Unnatural Base Pair.
    Ledbetter MP; Craig JM; Karadeema RJ; Noakes MT; Kim HC; Abell SJ; Huang JR; Anderson BA; Krishnamurthy R; Gundlach JH; Romesberg FE
    J Am Chem Soc; 2020 Feb; 142(5):2110-2114. PubMed ID: 31985216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic synthesis and modification of high molecular weight DNA using terminal deoxynucleotidyl transferase.
    Deshpande S; Yang Y; Chilkoti A; Zauscher S
    Methods Enzymol; 2019; 627():163-188. PubMed ID: 31630739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and Electronic Properties of Unnatural Base Pairs: The Role of Dispersion Interactions.
    Jahiruddin S; Mandal N; Datta A
    Chemphyschem; 2018 Jan; 19(1):67-74. PubMed ID: 29139595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Quenched Size-Expanded Nucleotide Reports Activity of the Leukemia Biomarker Terminal Deoxynucleotidyl Transferase (TdT).
    Pals MJ; Velema WA
    Angew Chem Int Ed Engl; 2023 Apr; 62(18):e202302796. PubMed ID: 36880583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic exploration of a class of hydrophobic unnatural base pairs yields multiple new candidates for the expansion of the genetic alphabet.
    Dhami K; Malyshev DA; Ordoukhanian P; Kubelka T; Hocek M; Romesberg FE
    Nucleic Acids Res; 2014; 42(16):10235-44. PubMed ID: 25122747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural versus artificial creation of base pairs in DNA: origin of nucleobases from the perspectives of unnatural base pair studies.
    Hirao I; Kimoto M; Yamashige R
    Acc Chem Res; 2012 Dec; 45(12):2055-65. PubMed ID: 22263525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PCR with an expanded genetic alphabet.
    Malyshev DA; Seo YJ; Ordoukhanian P; Romesberg FE
    J Am Chem Soc; 2009 Oct; 131(41):14620-1. PubMed ID: 19788296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reprograming the Replisome of a Semisynthetic Organism for the Expansion of the Genetic Alphabet.
    Ledbetter MP; Karadeema RJ; Romesberg FE
    J Am Chem Soc; 2018 Jan; 140(2):758-765. PubMed ID: 29309130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.