These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36455309)

  • 1. Antifungal mechanisms of volatile organic compounds produced by Pseudomonas fluorescens ZX as biological fumigants against Botrytis cinerea.
    Yue Y; Wang Z; Zhong T; Guo M; Huang L; Yang L; Kan J; Zalán Z; Hegyi F; Takács K; Du M
    Microbiol Res; 2023 Feb; 267():127253. PubMed ID: 36455309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volatile organic compounds produced by Aureobasidium pullulans induce electrolyte loss and oxidative stress in Botrytis cinerea and Alternaria alternata.
    Yalage Don SM; Schmidtke LM; Gambetta JM; Steel CC
    Res Microbiol; 2021; 172(1):103788. PubMed ID: 33049328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antifungal mechanisms of binary combinations of volatile organic compounds produced by lactic acid bacteria strains against Aspergillusflavus.
    Zhang Y; Li B; Fu M; Wang Z; Chen K; Du M; Zalán Z; Hegyi F; Kan J
    Toxicon; 2024 May; 243():107749. PubMed ID: 38710308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Volatile Organic Compounds Produced by
    Wang C; Duan T; Shi L; Zhang X; Fan W; Wang M; Wang J; Ren L; Zhao X; Wang Y
    Plant Dis; 2022 Sep; 106(9):2321-2329. PubMed ID: 35380464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of Volatile Organic Compounds Emitted by
    Wang Z; Zhong T; Chen X; Yang B; Du M; Wang K; Zalán Z; Kan J
    J Agric Food Chem; 2021 Feb; 69(7):2087-2098. PubMed ID: 33560120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promotion of tomato growth by the volatiles produced by the hypovirulent strain QT5-19 of the plant gray mold fungus Botrytis cinerea.
    Kamaruzzaman M; Wang Z; Wu M; Yang L; Han Y; Li G; Zhang J
    Microbiol Res; 2021 Jun; 247():126731. PubMed ID: 33676312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flavonoids from Sedum aizoon L. inhibit Botrytis cinerea by negatively affecting cell membrane lipid metabolism.
    Wang K; Zhang X; Shao X; Wei Y; Xu F; Wang H
    Appl Microbiol Biotechnol; 2022 Nov; 106(21):7139-7151. PubMed ID: 36201036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volatile organic compounds produced by Pseudomonas fluorescens WR-1 restrict the growth and virulence traits of Ralstonia solanacearum.
    Raza W; Ling N; Liu D; Wei Z; Huang Q; Shen Q
    Microbiol Res; 2016 Nov; 192():103-113. PubMed ID: 27664728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mycofumigation of postharvest blueberries with volatile compounds from Trichoderma atroviride IC-11 is a promising tool to control rots caused by Botrytis cinerea.
    Bello F; Montironi ID; Medina MB; Munitz MS; Ferreira FV; Williman C; Vázquez D; Cariddi LN; Musumeci MA
    Food Microbiol; 2022 Sep; 106():104040. PubMed ID: 35690443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection and application of antifungal VOCs-producing yeasts as biocontrol agents of grey mould in fruits.
    Ruiz-Moyano S; Hernández A; Galvan AI; Córdoba MG; Casquete R; Serradilla MJ; Martín A
    Food Microbiol; 2020 Dec; 92():103556. PubMed ID: 32950150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antifungal activity and mechanism of palmarosa essential oil against pathogen Botrytis cinerea in the postharvest onions.
    Kou Z; Zhang J; Lan Q; Liu L; Su X; Islam R; Tian Y
    J Appl Microbiol; 2023 Dec; 134(12):. PubMed ID: 38040655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hanseniaspora uvarum prolongs shelf life of strawberry via volatile production.
    Qin X; Xiao H; Cheng X; Zhou H; Si L
    Food Microbiol; 2017 May; 63():205-212. PubMed ID: 28040170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unveiling the Mechanisms for the Plant Volatile Organic Compound Linalool To Control Gray Mold on Strawberry Fruits.
    Xu Y; Tong Z; Zhang X; Wang Y; Fang W; Li L; Luo Z
    J Agric Food Chem; 2019 Aug; 67(33):9265-9276. PubMed ID: 31361479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome analysis of Botrytis cinerea in response to tea tree oil and its two characteristic components.
    Li Z; Shao X; Wei Y; Dai K; Xu J; Xu F; Wang H
    Appl Microbiol Biotechnol; 2020 Mar; 104(5):2163-2178. PubMed ID: 31980918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ROS Stress and Cell Membrane Disruption are the Main Antifungal Mechanisms of 2-Phenylethanol against
    Zou X; Wei Y; Jiang S; Xu F; Wang H; Zhan P; Shao X
    J Agric Food Chem; 2022 Nov; 70(45):14468-14479. PubMed ID: 36322824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome analysis reveals the mechanism of antifungal peptide epinecidin-1 against Botrytis cinerea by mitochondrial dysfunction and oxidative stress.
    Fan L; Wei Y; Chen Y; Ouaziz M; Jiang S; Xu F; Wang H; Shao X
    Pestic Biochem Physiol; 2024 Jun; 202():105932. PubMed ID: 38879298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethylene and Benzaldehyde Emitted from Postharvest Tomatoes Inhibit
    Lin Y; Ruan H; Akutse KS; Lai B; Lin Y; Hou Y; Zhong F
    J Agric Food Chem; 2019 Dec; 67(49):13706-13717. PubMed ID: 31693347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volatile Organic Compounds Produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 as Biological Fumigants To Control Ceratocystis fimbriata in Postharvest Sweet Potatoes.
    Zhang Y; Li T; Liu Y; Li X; Zhang C; Feng Z; Peng X; Li Z; Qin S; Xing K
    J Agric Food Chem; 2019 Apr; 67(13):3702-3710. PubMed ID: 30860830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antifungal activity of bio-active cell-free culture extracts and volatile organic compounds (VOCs) synthesised by endophytic fungal isolates of Garden Nasturtium.
    Santra HK; Dutta R; Banerjee D
    Sci Rep; 2024 May; 14(1):11228. PubMed ID: 38755187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ursolic acid, the main component of blueberry cuticular wax, inhibits Botrytis cinerea growth by damaging cell membrane integrity.
    Liu R; Zhang L; Xiao S; Chen H; Han Y; Niu B; Wu W; Gao H
    Food Chem; 2023 Jul; 415():135753. PubMed ID: 36870211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.