BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36455423)

  • 1. Quantification and visualization of meat quality traits in pork using hyperspectral imaging.
    Tang X; Rao L; Xie L; Yan M; Chen Z; Liu S; Chen L; Xiao S; Ding N; Zhang Z; Huang L
    Meat Sci; 2023 Feb; 196():109052. PubMed ID: 36455423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nondestructive detection of nutritional parameters of pork based on NIR hyperspectral imaging technique.
    Zuo J; Peng Y; Li Y; Zou W; Chen Y; Huo D; Chao K
    Meat Sci; 2023 Aug; 202():109204. PubMed ID: 37146500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extensive evaluation of prediction performance for 15 pork quality traits using large scale VIS/NIRS data.
    Tang X; Xie L; Liu S; Chen Z; Rao L; Chen L; Li L; Xiao S; Zhang Z; Huang L
    Meat Sci; 2022 Oct; 192():108902. PubMed ID: 35810726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-infrared hyperspectral imaging for detection and visualization of offal adulteration in ground pork.
    Jiang H; Ru Y; Chen Q; Wang J; Xu L
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 249():119307. PubMed ID: 33348095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parsimonious model development for real-time monitoring of moisture in red meat using hyperspectral imaging.
    Kamruzzaman M; Makino Y; Oshita S
    Food Chem; 2016 Apr; 196():1084-91. PubMed ID: 26593592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Online monitoring of red meat color using hyperspectral imaging.
    Kamruzzaman M; Makino Y; Oshita S
    Meat Sci; 2016 Jun; 116():110-7. PubMed ID: 26874594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring microstructural changes and moisture distribution of dry-cured pork: a combined confocal laser scanning microscopy and hyperspectral imaging study.
    Tian XY; Aheto JH; Dai C; Ren Y; Bai JW
    J Sci Food Agric; 2021 May; 101(7):2727-2735. PubMed ID: 33124042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-task convolutional neural network for simultaneous monitoring of lipid and protein oxidative damage in frozen-thawed pork using hyperspectral imaging.
    Cheng J; Sun J; Yao K; Xu M; Dai C
    Meat Sci; 2023 Jul; 201():109196. PubMed ID: 37087873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nondestructive detection and visualization of protein oxidation degree of frozen-thawed pork using fluorescence hyperspectral imaging.
    Cheng J; Sun J; Yao K; Xu M; Zhou X
    Meat Sci; 2022 Dec; 194():108975. PubMed ID: 36126392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-invasive spectroscopic and imaging systems for prediction of beef quality in a meat processing pilot plant.
    Dixit Y; Hitchman S; Hicks TM; Lim P; Wong CK; Holibar L; Gordon KC; Loeffen M; Farouk MM; Craigie CR; Reis MM
    Meat Sci; 2021 Nov; 181():108410. PubMed ID: 33358222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth simulation of Pseudomonas fluorescens in pork using hyperspectral imaging.
    Zhou B; Fan X; Song J; Wu J; Pan L; Tu K; Peng J; Dong Q; Xu J; Wu J
    Meat Sci; 2022 Jun; 188():108767. PubMed ID: 35228138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of quality traits and grades of intact chicken breast fillets by hyperspectral imaging.
    Yang Y; Wang W; Zhuang H; Yoon SC; Jiang H
    Br Poult Sci; 2021 Feb; 62(1):46-52. PubMed ID: 32875810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting quality and sensory attributes of pork using near-infrared hyperspectral imaging.
    Barbin DF; ElMasry G; Sun DW; Allen P
    Anal Chim Acta; 2012 Mar; 719():30-42. PubMed ID: 22340528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropic effect on the predictability of intramuscular fat content in pork by hyperspectral imaging and chemometrics.
    Kucha CT; Liu L; Ngadi M; GariƩpy C
    Meat Sci; 2021 Jun; 176():108458. PubMed ID: 33647629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid detection of frozen pork quality without thawing by Vis-NIR hyperspectral imaging technique.
    Xie A; Sun DW; Xu Z; Zhu Z
    Talanta; 2015 Jul; 139():208-15. PubMed ID: 25882428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-destructive determination of chemical composition in intact and minced pork using near-infrared hyperspectral imaging.
    Barbin DF; ElMasry G; Sun DW; Allen P
    Food Chem; 2013 Jun; 138(2-3):1162-71. PubMed ID: 23411227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting pork quality using Vis/NIR spectroscopy.
    Balage JM; da Luz E Silva S; Gomide CA; Bonin Mde N; Figueira AC
    Meat Sci; 2015 Oct; 108():37-43. PubMed ID: 26021598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robustness of hyperspectral imaging and PLSR model predictions of intramuscular fat in lamb M. longissimus lumborum across several flocks and years.
    Hitchman S; Loeffen MPF; Reis MM; Craigie CR
    Meat Sci; 2021 Sep; 179():108492. PubMed ID: 33771427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenotypic and genetic correlations of pork myoglobin content with meat colour and other traits in an eight breed-crossed heterogeneous population.
    Liu Q; Long Y; Zhang YF; Zhang ZY; Yang B; Chen CY; Huang LS; Su Y
    Animal; 2021 Nov; 15(11):100364. PubMed ID: 34601209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping of TBARS distribution in frozen-thawed pork using NIR hyperspectral imaging.
    Wu X; Song X; Qiu Z; He Y
    Meat Sci; 2016 Mar; 113():92-6. PubMed ID: 26630204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.