These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36455771)

  • 1. Core-shell Au@ZIF-67-based pollutant monitoring of thiram and carbendazim pesticides.
    Tran HN; Nguyen NB; Ly NH; Joo SW; Vasseghian Y
    Environ Pollut; 2023 Jan; 317():120775. PubMed ID: 36455771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The time-resolved D-SERS vibrational spectra of pesticide thiram.
    Li P; Liu H; Yang L; Liu J
    Talanta; 2013 Dec; 117():39-44. PubMed ID: 24209307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanofibrillar cellulose/Au@Ag nanoparticle nanocomposite as a SERS substrate for detection of paraquat and thiram in lettuce.
    Asgari S; Sun L; Lin J; Weng Z; Wu G; Zhang Y; Lin M
    Mikrochim Acta; 2020 Jun; 187(7):390. PubMed ID: 32548791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile fabrication of flexible AuNPs@CDA SERS substrate for enrichment and detection of thiram pesticide in water.
    Yu H; Guo D; Zhang H; Jia X; Han L; Xiao W
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121930. PubMed ID: 36191437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of flexible SERS substrate based on Au nanostars and PDMS for sensitive detection of Thiram residue in apple juice.
    Zhang Y; Wang Y; Liu A; Liu S
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Sep; 297():122721. PubMed ID: 37054572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic core-shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement.
    Guo P; Sikdar D; Huang X; Si KJ; Xiong W; Gong S; Yap LW; Premaratne M; Cheng W
    Nanoscale; 2015 Feb; 7(7):2862-8. PubMed ID: 25599516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Au-Ag OHCs-based SERS sensor coupled with deep learning CNN algorithm to quantify thiram and pymetrozine in tea.
    Li H; Luo X; Haruna SA; Zareef M; Chen Q; Ding Z; Yan Y
    Food Chem; 2023 Dec; 428():136798. PubMed ID: 37423106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring.
    Zhang L; Jiang C; Zhang Z
    Nanoscale; 2013 May; 5(9):3773-9. PubMed ID: 23535912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid determination of thiram on apple using a flexible bacterial cellulose-based SERS substrate.
    Xiao L; Feng S; Hua MZ; Lu X
    Talanta; 2023 Mar; 254():124128. PubMed ID: 36462280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Au nanoparticles decorated covalent organic framework composite for SERS analyses of malachite green and thiram residues in foods.
    Cheng Y; Ding Y; Chen J; Xu W; Wang W; Xu S
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 281():121644. PubMed ID: 35878495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-branched gold nanostars with fractal structure for SERS detection of the pesticide thiram.
    Zhu J; Liu MJ; Li JJ; Li X; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():586-593. PubMed ID: 28881284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core size optimized silver coated gold nanoparticles for rapid screening of tricyclazole and thiram residues in pear extracts using SERS.
    Hussain N; Pu H; Sun DW
    Food Chem; 2021 Jul; 350():129025. PubMed ID: 33609938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ultrafast electrochemical synthesis of Au@Ag core-shell nanoflowers as a SERS substrate for thiram detection in milk and juice.
    Wang J; Luo Z; Lin X
    Food Chem; 2023 Feb; 402():134433. PubMed ID: 36303364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of thiram on fruit surfaces and in juices with minimum sample pretreatment via a bendable and reusable substrate for surface-enhanced Raman scattering.
    Wu J; Huang Y; Miao J; Lai K
    J Sci Food Agric; 2022 Nov; 102(14):6211-6219. PubMed ID: 35478166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid nondestructive detection of mixed pesticides residues on fruit surface using SERS combined with self-modeling mixture analysis method.
    Hu B; Sun DW; Pu H; Wei Q
    Talanta; 2020 Sep; 217():120998. PubMed ID: 32498854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gap controlled self-assembly Au@Ag@Au NPs for SERS assay of thiram.
    Zhang J; Wu C; Yuan R; Huang JA; Yang X
    Food Chem; 2022 Oct; 390():133164. PubMed ID: 35551030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitive determination of thiram in apple samples using a ZIF-67 modified Si/Au@Ag composite as a SERS substrate.
    Yang R; Zhang B; Wang Y; Zheng Y; Zhang Q; Yang X
    Anal Methods; 2023 Sep; 15(37):4851-4861. PubMed ID: 37702243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic understanding of nanoparticle interactions to achieve highly-ordered arrays through self-assembly for sensitive surface-enhanced Raman scattering detection of trace thiram.
    Lin G; Zhou X; Lijie L
    Food Chem; 2024 Oct; 455():139852. PubMed ID: 38823142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing.
    Wang C; Wu X; Dong P; Chen J; Xiao R
    Biosens Bioelectron; 2016 Dec; 86():944-950. PubMed ID: 27498319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A general strategy to prepare SERS active filter membranes for extraction and detection of pesticides in water.
    Fateixa S; Raposo M; Nogueira HIS; Trindade T
    Talanta; 2018 May; 182():558-566. PubMed ID: 29501193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.