BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36455773)

  • 1. The roles of Fe oxyhydroxide coating and chemical aging in pyrogenic carbon nanoparticle transport in unsaturated porous media.
    Zhao K; Wang X; Li B; Shang J
    Environ Pollut; 2023 Jan; 317():120776. PubMed ID: 36455773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of coupled physical and chemical heterogeneity on the transport of pristine and aged pyrogenic carbon colloids in unsaturated porous media.
    Zhao K; Shang J
    Sci Total Environ; 2024 Mar; 918():170542. PubMed ID: 38309361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of Al/Fe oxyhydroxide coating and ionic strength in perfluorooctanoic acid (PFOA) transport in saturated porous media.
    Lyu X; Liu X; Wu X; Sun Y; Gao B; Wu J
    Water Res; 2020 May; 175():115685. PubMed ID: 32172055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of biochar colloids under unsaturated flow condition: Roles of chemical aging and cation type.
    Zhao K; Shang J
    Sci Total Environ; 2023 Feb; 859(Pt 2):160415. PubMed ID: 36427725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of soil-aged silver nanoparticles in unsaturated sand.
    Kumahor SK; Hron P; Metreveli G; Schaumann GE; Klitzke S; Lang F; Vogel HJ
    J Contam Hydrol; 2016 Dec; 195():31-39. PubMed ID: 27871667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antagonistic effects of humic acid and iron oxyhydroxide grain-coating on biochar nanoparticle transport in saturated sand.
    Wang D; Zhang W; Zhou D
    Environ Sci Technol; 2013 May; 47(10):5154-61. PubMed ID: 23614641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of Fe oxyhydroxide coating, illite clay, and peat moss in nanoscale titanium dioxide (nTiO
    Rastghalam ZS; Yan C; Shang J; Cheng T
    Environ Pollut; 2020 Feb; 257():113625. PubMed ID: 31806460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal changes of exposure to water on physic-chemical, stability, and transport characteristics of pyrogenic carbon colloids.
    Yin Y; Wang Y; Si H; Shang J
    Environ Pollut; 2024 Jan; 340(Pt 1):122834. PubMed ID: 37926407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with Pseudomonas aeruginosa biofilm.
    Tripathi S; Champagne D; Tufenkji N
    Environ Sci Technol; 2012 Jul; 46(13):6942-9. PubMed ID: 22148225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of carboxyl-functionalized carbon black nanoparticles in saturated porous media: Column experiments and model analyses.
    Kang JK; Yi IG; Park JA; Kim SB; Kim H; Han Y; Kim PJ; Eom IC; Jo E
    J Contam Hydrol; 2015; 177-178():194-205. PubMed ID: 25977994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Escherichia coli and phosphate on the transport of titanium dioxide nanoparticles in heterogeneous porous media.
    Xu N; Cheng X; Wang D; Xu X; Huangfu X; Li Z
    Water Res; 2018 Dec; 146():264-274. PubMed ID: 30278381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental measurements and numerical simulations of the transport and retention of nanocrystal CdSe/ZnS quantum dots in saturated porous media: effects of pH, organic ligand, and natural organic matter.
    Li C; Hassan A; Palmai M; Xie Y; Snee PT; Powell BA; Murdoch LC; Darnault CJG
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):8050-8073. PubMed ID: 33051847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosurfactant-mediated mobility of graphene oxide nanoparticles in saturated porous media.
    Chen J; Zhang Q; Zhu Y; Li Y; Chen W; Lu T; Qi Z
    Environ Sci Process Impacts; 2022 Oct; 24(10):1883-1894. PubMed ID: 36148869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size.
    Kamrani S; Rezaei M; Kord M; Baalousha M
    Water Res; 2018 Apr; 133():338-347. PubMed ID: 28864305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of citrate-coated silver nanoparticles in unsaturated sand.
    Kumahor SK; Hron P; Metreveli G; Schaumann GE; Vogel HJ
    Sci Total Environ; 2015 Dec; 535():113-21. PubMed ID: 25827720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of myo-inositol hexakisphosphate, ferrihydrite coating, ionic strength and pH on the transport of TiO
    Tang Y; Wang X; Yan Y; Zeng H; Wang G; Tan W; Liu F; Feng X
    Environ Pollut; 2019 Sep; 252(Pt B):1193-1201. PubMed ID: 31252117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of solution chemistry and humic acid on transport and deposition of aged microplastics in unsaturated porous media.
    Wang X; Diao Y; Dan Y; Liu F; Wang H; Sang W; Zhang Y
    Chemosphere; 2022 Dec; 309(Pt 2):136658. PubMed ID: 36183879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deposition and transport of functionalized carbon nanotubes in water-saturated sand columns.
    Tian Y; Gao B; Wang Y; Morales VL; Carpena RM; Huang Q; Yang L
    J Hazard Mater; 2012 Apr; 213-214():265-72. PubMed ID: 22361629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of nTiO2 particles and their attachment to sand: Effects of humic acid at different pH.
    Wu Y; Cheng T
    Sci Total Environ; 2016 Jan; 541():579-589. PubMed ID: 26439650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand.
    Wang D; Bradford SA; Harvey RW; Gao B; Cang L; Zhou D
    Environ Sci Technol; 2012 Mar; 46(5):2738-45. PubMed ID: 22316080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.