These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 36456152)

  • 1. Predicting Overall Survival Using Machine Learning Algorithms in Oral Cavity Squamous Cell Carcinoma.
    Tan JY; Adeoye J; Thomson P; Sharma D; Ramamurthy P; Choi SW
    Anticancer Res; 2022 Dec; 42(12):5859-5866. PubMed ID: 36456152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of machine learning algorithms for the prediction of five-year survival in oral squamous cell carcinoma.
    Alkhadar H; Macluskey M; White S; Ellis I; Gardner A
    J Oral Pathol Med; 2021 Apr; 50(4):378-384. PubMed ID: 33220109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An oral cavity squamous cell carcinoma quantitative histomorphometric-based image classifier of nuclear morphology can risk stratify patients for disease-specific survival.
    Lu C; Lewis JS; Dupont WD; Plummer WD; Janowczyk A; Madabhushi A
    Mod Pathol; 2017 Dec; 30(12):1655-1665. PubMed ID: 28776575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A machine learning-based prediction model for postoperative delirium in cardiac valve surgery using electronic health records.
    Li Q; Li J; Chen J; Zhao X; Zhuang J; Zhong G; Song Y; Lei L
    BMC Cardiovasc Disord; 2024 Jan; 24(1):56. PubMed ID: 38238677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of prediction models for one-year brain tumour survival using machine learning: a comparison of accuracy and interpretability.
    Charlton CE; Poon MTC; Brennan PM; Fleuriot JD
    Comput Methods Programs Biomed; 2023 May; 233():107482. PubMed ID: 36947980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning-based models for the prediction of breast cancer recurrence risk.
    Zuo D; Yang L; Jin Y; Qi H; Liu Y; Ren L
    BMC Med Inform Decis Mak; 2023 Nov; 23(1):276. PubMed ID: 38031071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning-based CT texture analysis to predict HPV status in oropharyngeal squamous cell carcinoma: comparison of 2D and 3D segmentation.
    Ren J; Yuan Y; Qi M; Tao X
    Eur Radiol; 2020 Dec; 30(12):6858-6866. PubMed ID: 32591885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of interpretable machine learning algorithms to predict distant metastasis in ovarian clear cell carcinoma.
    Guo QH; Xie FC; Zhong FM; Wen W; Zhang XR; Yu XJ; Wang XL; Huang B; Li LP; Wang XZ
    Cancer Med; 2024 Apr; 13(7):e7161. PubMed ID: 38613173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disability risk prediction model based on machine learning among Chinese healthy older adults: results from the China Health and Retirement Longitudinal Study.
    Han Y; Wang S
    Front Public Health; 2023; 11():1271595. PubMed ID: 38026309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An interpretable machine learning prognostic system for risk stratification in oropharyngeal cancer.
    Alabi RO; Almangush A; Elmusrati M; Leivo I; Mäkitie AA
    Int J Med Inform; 2022 Dec; 168():104896. PubMed ID: 36279655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and validation of machine learning-based risk prediction models of oral squamous cell carcinoma using salivary autoantibody biomarkers.
    Tseng YJ; Wang YC; Hsueh PC; Wu CC
    BMC Oral Health; 2022 Nov; 22(1):534. PubMed ID: 36424594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A practical online prediction platform to predict the survival status of laryngeal squamous cell carcinoma after 5 years.
    Li Z; Li T; Zhang P; Wang X
    Am J Otolaryngol; 2024; 45(3):104209. PubMed ID: 38154199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of machine learning techniques for predicting survival in ovarian cancer.
    Sorayaie Azar A; Babaei Rikan S; Naemi A; Bagherzadeh Mohasefi J; Pirnejad H; Bagherzadeh Mohasefi M; Wiil UK
    BMC Med Inform Decis Mak; 2022 Dec; 22(1):345. PubMed ID: 36585641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning-Based MRI Texture Analysis to Predict the Histologic Grade of Oral Squamous Cell Carcinoma.
    Ren J; Qi M; Yuan Y; Duan S; Tao X
    AJR Am J Roentgenol; 2020 Nov; 215(5):1184-1190. PubMed ID: 32930606
    [No Abstract]   [Full Text] [Related]  

  • 15. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
    Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P
    Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a machine learning model for the prediction of nodal metastasis in early T classification oral squamous cell carcinoma: SEER-based population study.
    Kwak MS; Eun YG; Lee JW; Lee YC
    Head Neck; 2021 Aug; 43(8):2316-2324. PubMed ID: 33792112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Ensemble Approach for the Prediction of Diabetes Mellitus Using a Soft Voting Classifier with an Explainable AI.
    Kibria HB; Nahiduzzaman M; Goni MOF; Ahsan M; Haider J
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing prognostic factors of five-year survival in gastric cancer patients using feature selection techniques with machine learning algorithms: a comparative study.
    Afrash MR; Mirbagheri E; Mashoufi M; Kazemi-Arpanahi H
    BMC Med Inform Decis Mak; 2023 Apr; 23(1):54. PubMed ID: 37024885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving Risk Identification of Adverse Outcomes in Chronic Heart Failure Using SMOTE+ENN and Machine Learning.
    Wang K; Tian J; Zheng C; Yang H; Ren J; Li C; Han Q; Zhang Y
    Risk Manag Healthc Policy; 2021; 14():2453-2463. PubMed ID: 34149290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and Assessment of a Machine Learning Model to Help Predict Survival Among Patients With Oral Squamous Cell Carcinoma.
    Karadaghy OA; Shew M; New J; Bur AM
    JAMA Otolaryngol Head Neck Surg; 2019 Dec; 145(12):1115-1120. PubMed ID: 31045212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.