These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36456247)

  • 1. Generalized nonorthogonal matrix elements. II: Extension to arbitrary excitations.
    Burton HGA
    J Chem Phys; 2022 Nov; 157(20):204109. PubMed ID: 36456247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized nonorthogonal matrix elements: Unifying Wick's theorem and the Slater-Condon rules.
    Burton HGA
    J Chem Phys; 2021 Apr; 154(14):144109. PubMed ID: 33858143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. I. Hamiltonian matrix elements between internally contracted excited valence bond wave functions.
    Chen Z; Chen X; Wu W
    J Chem Phys; 2013 Apr; 138(16):164119. PubMed ID: 23635123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust formulation of Wick's theorem for computing matrix elements between Hartree-Fock-Bogoliubov wavefunctions.
    Chen GP; Scuseria GE
    J Chem Phys; 2023 Jun; 158(23):. PubMed ID: 37318165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation of metric in Wick's theorem.
    Tokmachev AM
    J Chem Phys; 2023 Nov; 159(19):. PubMed ID: 37982480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Black-Box Description of Electron Correlation with the Spin-Extended Configuration Interaction Model: Implementation and Assessment.
    Tsuchimochi T; Ten-no S
    J Chem Theory Comput; 2016 Apr; 12(4):1741-59. PubMed ID: 26950651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear scaling density matrix perturbation theory for basis-set-dependent quantum response calculations: an orthogonal formulation.
    Niklasson AM; Weber V
    J Chem Phys; 2007 Aug; 127(6):064105. PubMed ID: 17705586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaching Full Correlation through Nonorthogonal Configuration Interaction: A Second-Order Perturbative Approach.
    Burton HGA; Thom AJW
    J Chem Theory Comput; 2020 Sep; 16(9):5586-5600. PubMed ID: 32786910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Nonorthogonal State-Interaction Approach for Matrix Product State Wave Functions.
    Knecht S; Keller S; Autschbach J; Reiher M
    J Chem Theory Comput; 2016 Dec; 12(12):5881-5894. PubMed ID: 27951678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relativistic nonorthogonal configuration interaction: application to L
    Grofe A; Li X
    Phys Chem Chem Phys; 2022 May; 24(18):10745-10756. PubMed ID: 35451435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fundamental Variable and Density Representation in Multistate DFT for Excited States.
    Lu Y; Gao J
    J Chem Theory Comput; 2022 Dec; 18(12):7403-7411. PubMed ID: 36346908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orbital optimization in nonorthogonal multiconfigurational self-consistent field applied to the study of conical intersections and avoided crossings.
    Mahler AD; Thompson LM
    J Chem Phys; 2021 Jun; 154(24):244101. PubMed ID: 34241370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reference Energies for Double Excitations: Improvement and Extension.
    Kossoski F; Boggio-Pasqua M; Loos PF; Jacquemin D
    J Chem Theory Comput; 2024 Jul; 20(13):5655-5678. PubMed ID: 38885174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab Initio Implementation of the Frenkel-Davydov Exciton Model: A Naturally Parallelizable Approach to Computing Collective Excitations in Crystals and Aggregates.
    Morrison AF; You ZQ; Herbert JM
    J Chem Theory Comput; 2014 Dec; 10(12):5366-76. PubMed ID: 26583220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Valence-bond theory and the evaluation of electronic energy matrix elements between nonorthogonal Slater determinants.
    Leasure SC; Balint-Kurti GG
    Phys Rev A Gen Phys; 1985 Apr; 31(4):2107-2113. PubMed ID: 9895738
    [No Abstract]   [Full Text] [Related]  

  • 16. Comment on "Valence-bond theory and the evaluation of electronic energy matrix elements between nonorthogonal Slater determinants".
    Gallup GA
    Phys Rev A Gen Phys; 1986 Jul; 34(1):671. PubMed ID: 9897309
    [No Abstract]   [Full Text] [Related]  

  • 17. Excited states from quantum Monte Carlo in the basis of Slater determinants.
    Humeniuk A; Mitrić R
    J Chem Phys; 2014 Nov; 141(19):194104. PubMed ID: 25416871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reply to "Comment on 'Valence-bond theory and the evaluation of electronic energy matrix elements between nonorthogonal Slater determinants' ".
    Balint-Kurti GG
    Phys Rev A Gen Phys; 1986 Jul; 34(1):672. PubMed ID: 9897310
    [No Abstract]   [Full Text] [Related]  

  • 19. Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. II. An efficient algorithm for matrix elements and analytical energy gradients in VBSCF method.
    Chen Z; Chen X; Wu W
    J Chem Phys; 2013 Apr; 138(16):164120. PubMed ID: 23635124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study of perturbative methods for computing electron transfer tunneling matrix elements with a nonorthogonal basis set.
    Teklos A; Skourtis SS
    J Chem Phys; 2006 Dec; 125(24):244103. PubMed ID: 17199336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.