These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36456266)

  • 1. Stimulus-frequency otoacoustic emissions and middle-ear pressure gains in a finite-element mouse model.
    Motallebzadeh H; Puria S
    J Acoust Soc Am; 2022 Nov; 152(5):2769. PubMed ID: 36456266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mouse middle-ear forward and reverse acoustics.
    Motallebzadeh H; Puria S
    J Acoust Soc Am; 2021 Apr; 149(4):2711. PubMed ID: 33940924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions.
    Puria S
    J Acoust Soc Am; 2003 May; 113(5):2773-89. PubMed ID: 12765395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Spatial Origins of Cochlear Amplification Assessed by Stimulus-Frequency Otoacoustic Emissions.
    Goodman SS; Lee C; Guinan JJ; Lichtenhan JT
    Biophys J; 2020 Mar; 118(5):1183-1195. PubMed ID: 31968228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Profiles of Stimulus-Frequency Otoacoustic Emissions from 0.5 to 20 kHz in Humans.
    Dewey JB; Dhar S
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):89-110. PubMed ID: 27681700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Audiometric predictions using stimulus-frequency otoacoustic emissions and middle ear measurements.
    Ellison JC; Keefe DH
    Ear Hear; 2005 Oct; 26(5):487-503. PubMed ID: 16230898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
    Bhagat SP; Kilgore C
    Neurosci Lett; 2014 Jan; 559():132-5. PubMed ID: 24333175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of Round-Trip Outer-Middle Ear Gain Using DPOAEs.
    Naghibolhosseini M; Long GR
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):121-138. PubMed ID: 27796594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Otoacoustic emissions reveal the micromechanical role of organ-of-Corti cytoarchitecture in cochlear amplification.
    Shera CA; Altoè A
    Proc Natl Acad Sci U S A; 2023 Oct; 120(41):e2305921120. PubMed ID: 37796989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Swept-Tone Stimulus-Frequency Otoacoustic Emissions in Human Newborns.
    Abdala C; Luo P; Guardia Y
    Trends Hear; 2019; 23():2331216519889226. PubMed ID: 31789131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrically evoked otoacoustic emissions from apical and basal perilymphatic electrode positions in the guinea pig cochlea.
    Nuttall AL; Zheng J; Ren T; de Boer E
    Hear Res; 2001 Feb; 152(1-2):77-89. PubMed ID: 11223283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering.
    Siegel JH; Cerka AJ; Recio-Spinoso A; Temchin AN; van Dijk P; Ruggero MA
    J Acoust Soc Am; 2005 Oct; 118(4):2434-43. PubMed ID: 16266165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Olivocochlear efferent vs. middle-ear contributions to the alteration of otoacoustic emissions by contralateral noise.
    Büki B; Wit HP; Avan P
    Brain Res; 2000 Jan; 852(1):140-50. PubMed ID: 10661505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast reverse propagation of sound in the living cochlea.
    He W; Fridberger A; Porsov E; Ren T
    Biophys J; 2010 Jun; 98(11):2497-505. PubMed ID: 20513393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forward and Reverse Middle Ear Transmission in Gerbil with a Normal or Spontaneously Healed Tympanic Membrane.
    Lin X; Meenderink SWF; Stomackin G; Jung TT; Martin GK; Dong W
    J Assoc Res Otolaryngol; 2021 Jun; 22(3):261-274. PubMed ID: 33591494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracochlear electrically evoked otoacoustic emissions: a model for in vivo assessment of outer hair cell electromotility.
    Ren T; Nuttall AL
    Hear Res; 1995 Dec; 92(1-2):178-83. PubMed ID: 8647741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrically Evoked Medial Olivocochlear Efferent Effects on Stimulus Frequency Otoacoustic Emissions in Guinea Pigs.
    Berezina-Greene MA; Guinan JJ
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):153-163. PubMed ID: 27798720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Link between stimulus otoacoustic emissions fine structure peaks and standing wave resonances in a cochlear model.
    Wen H; Meaud J
    J Acoust Soc Am; 2022 Mar; 151(3):1875. PubMed ID: 35364913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromotile hearing: evidence from basilar membrane motion and otoacoustic emissions.
    Nuttall AL; Ren T
    Hear Res; 1995 Dec; 92(1-2):170-7. PubMed ID: 8647740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrically evoked cubic distortion product otoacoustic emissions from gerbil cochlea.
    Ren T; Nuttall AL; Miller JM
    Hear Res; 1996 Dec; 102(1-2):43-50. PubMed ID: 8951449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.