These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36456285)

  • 1. Test-bench for the experimental characterization of porous material used in thermoacoustic refrigerators.
    Poignand G; Olivier C; Penelet G
    J Acoust Soc Am; 2022 Nov; 152(5):2804. PubMed ID: 36456285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoacoustic properties of fibrous materials.
    Jensen C; Raspet R
    J Acoust Soc Am; 2010 Jun; 127(6):3470-84. PubMed ID: 20550247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance measurements on a thermoacoustic refrigerator driven at high amplitudes.
    Poese ME; Garrett SL
    J Acoust Soc Am; 2000 May; 107(5 Pt 1):2480-6. PubMed ID: 10830371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurements of the impedance matrix of a thermoacoustic core: applications to the design of thermoacoustic engines.
    Bannwart FC; Penelet G; Lotton P; Dalmont JP
    J Acoust Soc Am; 2013 May; 133(5):2650-60. PubMed ID: 23654373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Frequency Response of Nanostructured Thermoacoustic Loudspeakers.
    Torraca P; Bobinger M; Servadio M; Pavan P; Becherer M; Lugli P; Larcher L
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30322201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical prediction of the onset of thermoacoustic instability from the experimental transfer matrix of a thermoacoustic core.
    Guedra M; Penelet G; Lotton P; Dalmont JP
    J Acoust Soc Am; 2011 Jul; 130(1):145-52. PubMed ID: 21786885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic streaming measurements in annular thermoacoustic engines.
    Joba S; Gusev V; Lotton P; Bruneau M
    J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):1892-9. PubMed ID: 12703701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel capillary-tube-based extension of thermoacoustic theory for random porous media.
    Roh HS; Raspet R; Bass HE
    J Acoust Soc Am; 2007 Mar; 121(3):1413-22. PubMed ID: 17407878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic characteristics of looped-tube thermoacoustic refrigerators with external and in-built acoustic drivers: A comparative study.
    Chen G; Xu J
    J Acoust Soc Am; 2021 Dec; 150(6):4406. PubMed ID: 34972271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Traveling wave thermoacoustic refrigeration with variable phase-coordinated boundary conditions.
    Callanan J; Adlakha R; Mousa M; Nouh M
    J Acoust Soc Am; 2023 Dec; 154(6):3943-3954. PubMed ID: 38147018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Large-Scale and Low-Cost Thermoacoustic Loudspeaker Based on Three-Dimensional Graphene Foam.
    Hou W; Wei Y; Wang Y; Duan S; Guo Z; Tian H; Yang Y; Ren TL
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38683903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing thermoacoustic regenerators for maximum amplification of acoustic power.
    Holzinger T; Emmert T; Polifke W
    J Acoust Soc Am; 2014 Nov; 136(5):2432-40. PubMed ID: 25373945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The optimal stack spacing for thermoacoustic refrigeration.
    Tijani ME; Zeegers JC; de Waele AT
    J Acoust Soc Am; 2002 Jul; 112(1):128-33. PubMed ID: 12141337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental study of the influence of different resonators on thermoacoustic conversion performance of a thermoacoustic-Stirling heat engine.
    Luo EC; Ling H; Dai W; Yu GY
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1507-9. PubMed ID: 16996100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-Based Thermoacoustic Sound Source.
    Qiao Y; Gou G; Wu F; Jian J; Li X; Hirtz T; Zhao Y; Zhi Y; Wang F; Tian H; Yang Y; Ren TL
    ACS Nano; 2020 Apr; 14(4):3779-3804. PubMed ID: 32186849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high frequency, power, and efficiency diaphragm acoustic-to-electric transducer for thermoacoustic engines and refrigerators.
    Steiner TW; Antonelli KB; Archibald GDS; De Chardon B; Gottfried KT; Malekian M; Kostka P
    J Acoust Soc Am; 2021 Feb; 149(2):948. PubMed ID: 33639786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review on the conversion of thermoacoustic power into electricity.
    Timmer MAG; de Blok K; van der Meer TH
    J Acoust Soc Am; 2018 Feb; 143(2):841. PubMed ID: 29495704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient unidirectional acoustic streaming in annular resonators.
    Amari M; Gusev V; Joly N
    Ultrasonics; 2004 Apr; 42(1-9):573-8. PubMed ID: 15047349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An aeroacoustically driven thermoacoustic heat pump.
    Slaton WV; Zeegers JC
    J Acoust Soc Am; 2005 Jun; 117(6):3628-35. PubMed ID: 16018466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of closed-loop active control method for suppression of thermoacoustic instability using radial air micro-jets.
    Deshmukh N; Ansari A; Kumar P; George AV; Thomas FJ; George MS
    MethodsX; 2023; 10():102123. PubMed ID: 37007624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.