BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36456532)

  • 1. Exposing the Limitations of Molecular Machine Learning with Activity Cliffs.
    van Tilborg D; Alenicheva A; Grisoni F
    J Chem Inf Model; 2022 Dec; 62(23):5938-5951. PubMed ID: 36456532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring uncharted territories: predicting activity cliffs in structure-activity landscapes.
    Guha R
    J Chem Inf Model; 2012 Aug; 52(8):2181-91. PubMed ID: 22873578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Promiscuity Cliffs Using Machine Learning.
    Blaschke T; Feldmann C; Bajorath J
    Mol Inform; 2021 Jan; 40(1):e2000196. PubMed ID: 32881355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OLB-AC: toward optimizing ligand bioactivities through deep graph learning and activity cliffs.
    Yin Y; Hu H; Yang J; Ye C; Goh WWB; Kong AW; Wu J
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38889277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein characteristics substantially influence the propensity of activity cliffs among kinase inhibitors.
    Daoud S; Taha M
    Sci Rep; 2024 Apr; 14(1):9058. PubMed ID: 38643174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing the public activity cliff knowledge base with new categories of activity cliffs.
    Hu H; Bajorath J
    Future Sci OA; 2020 Apr; 6(5):FSO472. PubMed ID: 32518687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PatentNetML: A Novel Framework for Predicting Key Compounds in Patents Using Network Science and Machine Learning.
    Zhu TF; Qian R; Wei X; Lu AP; Cao DS
    J Med Chem; 2024 Jan; 67(2):1347-1359. PubMed ID: 38181431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MolSHAP: Interpreting Quantitative Structure-Activity Relationships Using Shapley Values of R-Groups.
    Tian T; Li S; Fang M; Zhao D; Zeng J
    J Chem Inf Model; 2024 Apr; 64(7):2236-2249. PubMed ID: 37584270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MoleculeNet: a benchmark for molecular machine learning.
    Wu Z; Ramsundar B; Feinberg EN; Gomes J; Geniesse C; Pappu AS; Leswing K; Pande V
    Chem Sci; 2018 Jan; 9(2):513-530. PubMed ID: 29629118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Building Representation Learning Models for Antibody Comprehension.
    Barton J; Gaspariunas A; Galson JD; Leem J
    Cold Spring Harb Perspect Biol; 2024 Mar; 16(3):. PubMed ID: 38012013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feature importance correlation from machine learning indicates functional relationships between proteins and similar compound binding characteristics.
    Rodríguez-Pérez R; Bajorath J
    Sci Rep; 2021 Jul; 11(1):14245. PubMed ID: 34244588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing the predictive power of reverse screening to infer drug targets, with the help of machine learning.
    Daina A; Zoete V
    Commun Chem; 2024 May; 7(1):105. PubMed ID: 38724725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning Strategies for Reaction Development: Toward the Low-Data Limit.
    Shim E; Tewari A; Cernak T; Zimmerman PM
    J Chem Inf Model; 2023 Jun; 63(12):3659-3668. PubMed ID: 37312524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Best practices for machine learning in antibody discovery and development.
    Wossnig L; Furtmann N; Buchanan A; Kumar S; Greiff V
    Drug Discov Today; 2024 Jul; 29(7):104025. PubMed ID: 38762089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Augmenting large language models with chemistry tools.
    M Bran A; Cox S; Schilter O; Baldassari C; White AD; Schwaller P
    Nat Mach Intell; 2024; 6(5):525-535. PubMed ID: 38799228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data-balanced transformer for accelerated ionizable lipid nanoparticles screening in mRNA delivery.
    Wu K; Yang X; Wang Z; Li N; Zhang J; Liu L
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38670158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effectiveness of molecular fingerprints for exploring the chemical space of natural products.
    Boldini D; Ballabio D; Consonni V; Todeschini R; Grisoni F; Sieber SA
    J Cheminform; 2024 Mar; 16(1):35. PubMed ID: 38528548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opportunities and Challenges for Machine Learning-Assisted Enzyme Engineering.
    Yang J; Li FZ; Arnold FH
    ACS Cent Sci; 2024 Feb; 10(2):226-241. PubMed ID: 38435522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generative artificial intelligence in drug discovery: basic framework, recent advances, challenges, and opportunities.
    Gangwal A; Ansari A; Ahmad I; Azad AK; Kumarasamy V; Subramaniyan V; Wong LS
    Front Pharmacol; 2024; 15():1331062. PubMed ID: 38384298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HyperPCM: Robust Task-Conditioned Modeling of Drug-Target Interactions.
    Svensson E; Hoedt PJ; Hochreiter S; Klambauer G
    J Chem Inf Model; 2024 Apr; 64(7):2539-2553. PubMed ID: 38185877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.